VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.3, Problem 14.62P
To determine
Find the engine thrust necessary to keep the fireboat in a stationary position.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an airplane with a jet engine attached to the tail section that expels combustion gases at a rate of 18 kg/s with a velocity of V = 300 m/s relative to the plane. During landing, a thrust reverser (which serves as a brake for the aircraft and facilitates landing on a short runway) is lowered in the path of the exhaust jet, which deflects the exhaust rearward 120 degrees, as shown below.
Determine (a) the thrust (forward force) that the engine produces prior to the insertion of the thrust reverser and (b) the braking force produced after the thrust reverser is deployed.
5. A 60-kg ice skater is standing on ice with ice skates (negligible friction). She is holding a
flexible hose (essentially weightless) that directs a 2-cm-diameter stream of water horizontally
parallel to her skates. The water velocity at the hose outlet is 10 m/s relative to the skater.
If she is initially standing still, determine:
(a) the velocity of the skater and the distance she travels in 5 s.,
(b) how long it will take to move 5 m and the velocity at that moment.
Ice skater
10 m/s
D = 2 cm
PROBLEM 8. The total weight of space shuttle including its payload mass and the empty external tank,
and its empty two solid rocket boosters is mo = 428,100 lb. It is known that the external tank and the
two solid rocket boosters initially holds m,(0) = 3,728,875 lb of fuel (that is the total weight of solid
fuel plus liquid oxygen and hydrogen). The shuttle consumes its liquid and solid fuels at a constant rate
of A = 14,300 lb/s. Also, it is known that the shuttle thrust force is F, = 400,000 lb.
(a) Use the Newton's 2nd law below to find the second order differential equation that describes the
vertical position y of the space shuttle as a function of time. The shuttle is launched vertically
upward from the ground as shown below, with the positive direction upward and the air resistance
is ignored. The Earth's gravitational acceleration on its surface is g = 32.2 ft/s² and its radius is
R = 4000 miles.
Frotat (t) = [m(t). v]
Fthrust
Where,
- Frotat(t) is the net force acting on the…
Chapter 14 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases in rapid...Ch. 14.1 - Car A weighing 4000 lb and car B weighing 3700 lb...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9, assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - Prob. 14.16PCh. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - Prob. 14.21PCh. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - Prob. 14.24PCh. 14.1 - Prob. 14.25PCh. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation HO=rmv+HG between the angular...Ch. 14.1 - Prob. 14.28PCh. 14.1 - Prob. 14.29PCh. 14.1 - Show that the relation MA=HA, where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - In Prob. 14.3, determine the energy lost (a) when...Ch. 14.2 - Prob. 14.33PCh. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Prob. 14.35PCh. 14.2 - Prob. 14.36PCh. 14.2 - Prob. 14.37PCh. 14.2 - Ball B is suspended from a cord of length l...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - Prob. 14.41PCh. 14.2 - 14.41 and 14.42 In a game of pool, ball A is...Ch. 14.2 - Prob. 14.43PCh. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - Prob. 14.45PCh. 14.2 - Prob. 14.46PCh. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each weighing 2 lb,...Ch. 14.2 - Three small spheres A, B, and C, each of mass m,...Ch. 14.2 - Prob. 14.51PCh. 14.2 - Prob. 14.52PCh. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of = 1000 kg/m3...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Prob. 14.60PCh. 14.3 - Prob. 14.61PCh. 14.3 - Prob. 14.62PCh. 14.3 - Prob. 14.63PCh. 14.3 - Prob. 14.64PCh. 14.3 - Prob. 14.65PCh. 14.3 - Prob. 14.66PCh. 14.3 - Prob. 14.67PCh. 14.3 - Prob. 14.68PCh. 14.3 - Prob. 14.69PCh. 14.3 - Prob. 14.70PCh. 14.3 - Prob. 14.71PCh. 14.3 - Prob. 14.72PCh. 14.3 - Prob. 14.73PCh. 14.3 - Prob. 14.74PCh. 14.3 - Prob. 14.75PCh. 14.3 - Prob. 14.76PCh. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - Prob. 14.78PCh. 14.3 - Prob. 14.79PCh. 14.3 - Prob. 14.80PCh. 14.3 - Prob. 14.81PCh. 14.3 - Prob. 14.82PCh. 14.3 - Prob. 14.83PCh. 14.3 - Prob. 14.84PCh. 14.3 - Prob. 14.85PCh. 14.3 - Prob. 14.86PCh. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - Prob. 14.88PCh. 14.3 - Prob. 14.89PCh. 14.3 - Prob. 14.90PCh. 14.3 - Prob. 14.91PCh. 14.3 - Prob. 14.92PCh. 14.3 - A rocket sled burns fuel at the constant rate of...Ch. 14.3 - Prob. 14.94PCh. 14.3 - Prob. 14.95PCh. 14.3 - Prob. 14.96PCh. 14.3 - Prob. 14.97PCh. 14.3 - Prob. 14.98PCh. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb, including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - Prob. 14.102PCh. 14.3 - Prob. 14.103PCh. 14.3 - Prob. 14.104PCh. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 50-kg mother and her 26-kg son are sledding down...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - Prob. 14.108RPCh. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - Prob. 14.110RPCh. 14 - A 6000-kg dump truck has a 1500-kg stone block...Ch. 14 - For the ceiling-mounted fan shown, determine the...Ch. 14 - Prob. 14.113RPCh. 14 - Prob. 14.114RPCh. 14 - Prob. 14.115RPCh. 14 - A chain of length l and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider an airplane with a jet engine attached to the tail section that expels combustion gases at a rate of 18 kg/s with a velocity of V = 300 m/s relative to the plane. During landing, a thrust reverser (which serves as a brake for the aircraft and facilitates landing on a short runway) is lowered in the path of the exhaust jet, which deflects the exhaust from rearward to 120°. Determine (a) the thrust (forward force) that the engine produces prior to the insertion of the thrust reverser and (b) the braking force produced after the thrust reverser is deployed.arrow_forwardConsider an airplane with a jet engine attached to the tail section that expels combustion gases at a rate of 18 kg/s with a velocity of V = 300 m/s relative to the plane. During landing, a thrust reverser (which serves as a brake for the aircraft and facilitates landing on a short runway) is lowered in the path of the exhaust jet, which deflects the exhaust from rearward to 150°. Determine (a) the thrust (forward force) that the engine produces prior to the insertion of the thrust reverser and (b) the braking force produced after the thrust reverser is deployed.arrow_forwardA jet of water of diameter 50 mm, having a velocity of 30 m/s strikes a curved vane which is moving with a velocity of 15 m/s in the direction of the jet. The jet leaves the vane at an angle of 60° to the direction of motion of vanes at outlet. Determine : (i) the force exerted by the jet on the vane in the direction of motion, (ii) work done per second by the jet. [Ans. (i) 662.5 N, (ii) 9937.5 Nm/s]arrow_forward
- A water jet strikes a triangular block resting on a stationary table and is deflected 30° as shown in Fig. B.5. The mass flow rate of the water jet is gradually increased to 30 kg/s such that the block starts to slide on the table. The mass of the block is 1.5 kg. Assuming that the weight of the water can be neglected, and the inlet and outlet velocities of the jet are the same and remain unchanged. Outlet Inlet Water jet Triangular block 30 Fig. B.5 (a) Determine the horizontal and vertical forces against the block due to the water jet, in terms of the velocity of the water jet, V. (b) If the cross-sectional area of the water jet is 40 cm?, determine the velocity of the water jet and the coefficient of friction, µ between the block and the table.arrow_forwardB8arrow_forwardA jet issued of water at the rate of 200 L/s and a velocity of 36 m/s strikes a blade moving in the same direction at 15 m/s. The deflection angle of the blade is 120°. Neglecting friction, determine: (a) the x- and y-components of the force exerted by the jet on the blade in N.; (b) the work done by the jet on the blade, in joules.arrow_forward
- A constant force P is applied to a piston and rod of total mass m to make them move in a cylinder filled with oil. As the piston moves, the oil is forced through orifices in the piston and exerts on the piston a force of magnitude kv in a direction opposite to the motion of the piston. Knowing that the piston starts from rest at t= 0 and x = 0, show that the equation relating x, v, and t, where x is the distance traveled by the piston and v is the speed of the piston, is linear in each of these variables.arrow_forwardA water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of Q; the velocity of the water when it hits the water surface is U. At a particular instant of time the total mass of the container and water is m. The force registered by the weighing balance at this instant of time is (a) mg + pQU (c) mg + PQU2/2 (b) mg + 2PQU (d) pQU?/2arrow_forward2. A horizontal jet of water having a velocity of 25 m/s, diameter=2 cm strikes an inclined straight blade moving in the direction opposite to the direction of jet with a velocity of 10 m/s. If the inclination of the blade is 15° with the horizontal, the force developed on the blade per kg of water per second in the direction of the flow will be: а. 196 b. 217 с. 274 d. 292 e. None of them.arrow_forward
- Consider an airplane with a jet engine attached to the tail section that expels combustion gases at a rate of 18 kg/s with a velocity of V = 300 m/s relative to the plane (Fig. 2). During landing, a thrust reverser (which serves as a brake for the aircraft and facilitates landing on a short runway) is lowered in the path of the exhaust jet, which deflects the exhaust from rearward to 1500. Determine (a) The thrust (forward force) that the engine produces prior to the insertion of the thrust reverser. (b) The braking force produced after the thrust reverser is deployed.arrow_forwardSmall steel balls, each with a mass of 190 g, enter the semicircular trough (Radius =0.8 m) in the vertical plane with a horizontal velocity of VA=7.4 m/s at A. Friction is negligible. UB В le VA A velocity at C (m/s) O a. 7.5 b. 6.25 c. 5 d. 3.75 e. 2,5 normal reaction at C velocity at B (m/s) O a. 5.8 b. 4.84 с. 3.87 d. 2.9 e. 1.93 normal reaction at B (N) minimum velocity at A to reach B a. 10.02 O b. 7,51 О с. 6.26 O d. 8,77 О е. 2.5arrow_forwardProblem 2.1391 A sprinkler essentially consists of a pipe AB mounted on a hollow shaft. The water comes in the pipe at O and goes out the nozzles at A and B, causing the pipe to rotate. Assume that the particles of water move through the pipe at a constant rate relative to the pipe of 5 ft/s and that the pipe AB is rotating at a constant angular velocity of 250 rpm. In all cases, express the answers using the right-handed and orthogonal component system shown. Determine the acceleration of the water particles when they are at d/2 from 0 (still within the horizontal portion of the pipe). Let d = 7 in. Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY