Concept explainers
In the scattering experiment of Prob. 14.26, it is known that the alpha particle is projected from A0(300, 0, 300) and that it collides with the oxygen nucleus C at Q(240, 200, 100), where all coordinates are expressed in millimeters. Determine the coordinates of point B0 where the original path of nucleus B intersects the zx plane. (Hint: Express that the angular momentum of the three particles about Q is conserved.)
14.26 In a scattering experiment, an alpha particle A is projected with the velocity u0 = −(600 m/s)i + (750 m/s)j − (800 m/s)k into a stream of oxygen nuclei moving with a common velocity v0 = (600 m/s)j. After colliding successively with the nuclei B and C, particle A is observed to move along the path defined by the points A1 (280, 240, 120) and A2 (360, 320, 160), while nuclei B and C are observed to move along paths defined, respectively, by B1 (147, 220, 130) and B2 (114, 290, 120), and by C1 (240, 232, 90) and C2 (240, 280, 75). All paths are along straight lines and all coordinates are expressed in millimeters. Knowing that the mass of an oxygen nucleus is four times that of an alpha particle, determine the speed of each of the three particles after the collisions.
Fig. P14.26
The coordinates of point
Answer to Problem 14.48P
The coordinates of point
Explanation of Solution
Given information:
The velocity of the alpha particle A is
The common velocity of oxygen nuclei is
The alpha particle A projected from
The position of the alpha particle A is
The position of the nuclei B is
The position of the nuclei C is
The mass of an oxygen nucleus is four times that of an alpha particle.
The alpha particle collides with the oxygen nucleus C at
Calculation:
Provide the positions of each point in vector form as shown below.
Sketch the scattering of the alpha and nuclei particles as shown in Figure 1.
Refer to Figure 1.
Calculate the position vectors as shown below.
Calculate
Substitute
Calculate
Substitute
Calculate
Substitute
Calculate
Substitute
Calculate
Substitute
Calculate
Calculate the unit vector
Substitute
Calculate the unit vectors
Substitute
Calculate the unit vectors
Substitute
Provide the velocity vectors after the collisions as shown below.
Apply the conservation of momentum as shown below.
Substitute
Substitute
Equating the components of
Solve the Equations to get the speed of the particles.
Calculate the velocity vector
Substitute
Apply the conservation of momentum about Q as shown below.
Substitute
Equating the components of
Refer to Figure 1.
Calculate the coordinates of
Coordinate of along x direction.
Substitute
Coordinate of along y direction.
Coordinate of along z direction.
Substitute
Therefore, the coordinates of point
Want to see more full solutions like this?
Chapter 14 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- (L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forwardIf L-719.01 mm, = 7839.63 N/m³, the normal stress σ caused by self-weight at the location of the maximum normal stress in the bar can be calculated as (Please select the correct value of σ given in Pa and rounded to three decimal places.) Select one: ○ 1. 1409.193 2. 845.516 O 3. 11273.545 ○ 4.8455.159 ○ 5.4509.418 6. 2818.386 7.5636.772arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY