Chemistry: The Molecular Science
Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 13QRT

(a)

Interpretation Introduction

Interpretation:

Conjugate partner for HI has to be given along with the name.

Concept Introduction:

Brønsted-Lowry acid is the one which can donate H+ ion to other substances.  It can also be said as proton donors.  Brønsted-Lowry base is the one which can accept H+ ion from other substances.  It can also be said as proton acceptors.  In order to be a Brønsted-Lowry base, an unshared pair of electrons must be present on molecule or the ion.

Difference between conjugate acid-base pair is H+ ion.  For a Brønsted-Lowry acid, the conjugate base has fewer H+ and for Brønsted-Lowry base, the conjugate acid has more H+.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given formula is HI.  This is a Brønsted-Lowry acid, as this has one more H+ ion.  When this is added to water, a proton is transferred from acid to the water resulting in formation of H3O+(aq) along with conjugate base.  This can be represented in chemical equation as,

    HI+H2O(l)I(aq)+H3O+(aq)

Conjugate partner of HI is I.  The formed conjugate partner is named as iodide.

(b)

Interpretation Introduction

Interpretation:

Conjugate partner for NO3 has to be given along with the name.

Concept Introduction:

Refer part (a).

(b)

Expert Solution
Check Mark

Explanation of Solution

Given formula is NO3.  This is a Brønsted-Lowry base, as this does not have H+ ions.  When this is added to water, a proton is transferred from water resulting in formation of OH(aq) along with conjugate acid.  This can be represented in chemical equation as,

    NO3+H2O(l)HNO3(aq)+OH(aq)

Conjugate partner of NO3 is HNO3.  The formed conjugate partner is named as nitric acid.

(c)

Interpretation Introduction

Interpretation:

Conjugate partner for CO32 has to be given along with the name.

Concept Introduction:

Refer part (a).

(c)

Expert Solution
Check Mark

Explanation of Solution

Given formula is CO32.  This is a Brønsted-Lowry base, as this does not have H+ ions.  When this is added to water, a proton is transferred from water resulting in formation of OH(aq) along with conjugate acid.  This can be represented in chemical equation as,

    CO32+H2O(l)HCO3(aq)+OH(aq)

Conjugate partner of CO32 is HCO3.  The formed conjugate partner is named as hydrogen carbonate ion.

(d)

Interpretation Introduction

Interpretation:

Conjugate partner for H2CO3 has to be given along with the name.

Concept Introduction:

Refer part (a).

(d)

Expert Solution
Check Mark

Explanation of Solution

Given formula is H2CO3.  This is a Brønsted-Lowry acid, as this has one more H+ ion.  When this is added to water, a proton is transferred from acid to the water resulting in formation of H3O+(aq) along with conjugate base.  This can be represented in chemical equation as,

    H2CO3+H2O(l)HCO3(aq)+H3O+(aq)

Conjugate partner of H2CO3 is HCO3.  The formed conjugate partner is named as hydrogen carbonate ion.

(e)

Interpretation Introduction

Interpretation:

Conjugate partner for HSO4 has to be given along with the name.

Concept Introduction:

Refer part (a).

(e)

Expert Solution
Check Mark

Explanation of Solution

Given formula is HSO4.  This can act as both Brønsted-Lowry acid and Brønsted-Lowry base.

Conjugate partner when HSO4 acts as Brønsted-Lowry acid:

When this is added to water, a proton is transferred from acid to the water resulting in formation of H3O+(aq) along with conjugate base.  This can be represented in chemical equation as,

    HSO4+H2O(l)SO42(aq)+H3O+(aq)

Conjugate partner of HSO4 is SO42.  The formed conjugate partner is named as sulfate ion.

Conjugate partner when HSO4 acts as Brønsted-Lowry base:

When this is added to water, a proton is transferred from water to the base resulting in formation of OH(aq) along with conjugate acid.  This can be represented in chemical equation as,

    HSO4+H2O(l)H2SO4(aq)+OH(aq)

Conjugate partner of HSO4 is H2SO4.  The formed conjugate partner is named as sulfuric acid.

(f)

Interpretation Introduction

Interpretation:

Conjugate partner for SO32 has to be given along with the name.

Concept Introduction:

Refer part (a).

(f)

Expert Solution
Check Mark

Explanation of Solution

Given formula is SO32.  This is a Brønsted-Lowry base, as this does not have H+ ions.  When this is added to water, a proton is transferred from water resulting in formation of OH(aq) along with conjugate acid.  This can be represented in chemical equation as,

    SO32+H2O(l)HSO3(aq)+OH(aq)

Conjugate partner of SO32 is HSO3.  The formed conjugate partner is named as hydrogen sulfite ion.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the aqueous solutions of two weak acids depicted in diagrams A and B. (a) What is the formula of the acid and conjugate base in each solution? (b) Which of the following Ka values corresponds to each acid: 3.4 × 10 −7 and 1.0 × 10 −2? (c) Which conjugate base is stronger?
Give the formula of the conjugate acid:(a) NH₃(b) NH₂⁻(c) nicotine, C₁₀H₁₄N₂
Give the formula of the conjugate acid:(a) O²⁻(b) SO₄²⁻(c) H₂O

Chapter 14 Solutions

Chemistry: The Molecular Science

Ch. 14.4 - Calculate the pH of a 0.040-M NaOH solution. Ch. 14.4 - In a hospital laboratory the pH of a bile sample...Ch. 14.4 - Prob. 14.8CECh. 14.4 - Prob. 14.9ECh. 14.4 - Prob. 14.10ECh. 14.5 - Write the ionization equation and ionization...Ch. 14.5 - Write the ionization equation and the Kb...Ch. 14.5 - Prob. 14.11CECh. 14.5 - Prob. 14.12CECh. 14.5 - Prob. 14.13ECh. 14.6 - Prob. 14.14CECh. 14.6 - Prob. 14.15CECh. 14.6 - Prob. 14.16CECh. 14.6 - Prob. 14.17CECh. 14.6 - Prob. 14.18CECh. 14.7 - Lactic acid is a monoprotic acid that occurs...Ch. 14.7 - Prob. 14.9PSPCh. 14.7 - Prob. 14.19ECh. 14.7 - Prob. 14.10PSPCh. 14.7 - Prob. 14.20ECh. 14.8 - Prob. 14.11PSPCh. 14.8 - Prob. 14.21CECh. 14.8 - Prob. 14.12PSPCh. 14.8 - Prob. 14.22ECh. 14.8 - Prob. 14.23CECh. 14.8 - Prob. 14.24CECh. 14.9 - Predict whether each of these is a Lewis acid or a...Ch. 14.9 - Prob. 14.26ECh. 14.9 - Prob. 14.27ECh. 14.10 - Prob. 14.28ECh. 14.10 - Prob. 14.13PSPCh. 14.10 - Prob. 14.29ECh. 14.10 - Calculate the pH of 5.2-M aqueous sodium...Ch. 14 - Lactic acid, CH3CH(OH)COOH, is a weak monoprotic...Ch. 14 - Define a Brnsted-Lowry acid and a Brnsted-Lowry...Ch. 14 - Prob. 2QRTCh. 14 - Prob. 3QRTCh. 14 - Prob. 4QRTCh. 14 - Prob. 5QRTCh. 14 - Prob. 6QRTCh. 14 - Prob. 7QRTCh. 14 - Prob. 8QRTCh. 14 - Write a chemical equation to describe the proton...Ch. 14 - Write a chemical equation to describe the proton...Ch. 14 - Prob. 11QRTCh. 14 - Prob. 12QRTCh. 14 - Prob. 13QRTCh. 14 - Prob. 14QRTCh. 14 - Prob. 15QRTCh. 14 - Prob. 16QRTCh. 14 - Prob. 17QRTCh. 14 - Prob. 18QRTCh. 14 - Prob. 19QRTCh. 14 - Prob. 20QRTCh. 14 - Prob. 21QRTCh. 14 - Prob. 22QRTCh. 14 - Prob. 23QRTCh. 14 - Formic acid, HCOOH, is found in ants. Write a...Ch. 14 - Milk of magnesia, Mg(OH)2, has a pH of 10.5....Ch. 14 - A sample of coffee has a pH of 4.3. Calculate the...Ch. 14 - Calculate the pH of a solution that is 0.025-M in...Ch. 14 - Calculate the pH of a 0.0013-M solution of HNO3....Ch. 14 - Prob. 29QRTCh. 14 - Prob. 30QRTCh. 14 - A 1000.-mL solution of hydrochloric acid has a pH...Ch. 14 - Prob. 32QRTCh. 14 - Prob. 33QRTCh. 14 - Prob. 34QRTCh. 14 - Figure 14.3 shows the pH of some common solutions....Ch. 14 - Figure 14.3 shows the pH of some common solutions....Ch. 14 - The measured pH of a sample of seawater is 8.30....Ch. 14 - Prob. 38QRTCh. 14 - Valine is an amino acid with this Lewis structure:...Ch. 14 - Leucine is an amino acid with this Lewis...Ch. 14 - Prob. 41QRTCh. 14 - Prob. 42QRTCh. 14 - Prob. 43QRTCh. 14 - Prob. 44QRTCh. 14 - Prob. 45QRTCh. 14 - Prob. 46QRTCh. 14 - Prob. 47QRTCh. 14 - Prob. 48QRTCh. 14 - Prob. 49QRTCh. 14 - Prob. 50QRTCh. 14 - Prob. 51QRTCh. 14 - Prob. 52QRTCh. 14 - Prob. 53QRTCh. 14 - Prob. 54QRTCh. 14 - A 0.015-M solution of cyanic acid has a pH of...Ch. 14 - Prob. 56QRTCh. 14 - The pH of a 0.10-M solution of propanoic acid,...Ch. 14 - Prob. 58QRTCh. 14 - Prob. 59QRTCh. 14 - Prob. 60QRTCh. 14 - Prob. 61QRTCh. 14 - Amantadine, C10H15NH2, is a weak base used in the...Ch. 14 - Prob. 63QRTCh. 14 - Lactic acid, C3H6O3, occurs in sour milk as a...Ch. 14 - Prob. 65QRTCh. 14 - Complete each of these reactions by filling in the...Ch. 14 - Complete each of these reactions by filling in the...Ch. 14 - Predict which of these acid-base reactions are...Ch. 14 - Predict which of these acid-base reactions are...Ch. 14 - Prob. 70QRTCh. 14 - Prob. 71QRTCh. 14 - Prob. 72QRTCh. 14 - Prob. 73QRTCh. 14 - Prob. 74QRTCh. 14 - Prob. 75QRTCh. 14 - Prob. 76QRTCh. 14 - Prob. 77QRTCh. 14 - Prob. 78QRTCh. 14 - Prob. 79QRTCh. 14 - Prob. 80QRTCh. 14 - Prob. 81QRTCh. 14 - Trimethylamine, (CH3)3N, reacts readily with...Ch. 14 - Prob. 83QRTCh. 14 - Prob. 84QRTCh. 14 - Prob. 85QRTCh. 14 - Prob. 86QRTCh. 14 - Common soap is made by reacting sodium carbonate...Ch. 14 - Prob. 88QRTCh. 14 - Prob. 89QRTCh. 14 - Prob. 90QRTCh. 14 - Prob. 91QRTCh. 14 - Prob. 92QRTCh. 14 - Prob. 93QRTCh. 14 - Several acids and their respective equilibrium...Ch. 14 - Prob. 95QRTCh. 14 - Prob. 96QRTCh. 14 - Does the pH of the solution increase, decrease, or...Ch. 14 - Does the pH of the solution increase, decrease, or...Ch. 14 - Prob. 99QRTCh. 14 - Prob. 100QRTCh. 14 - Prob. 101QRTCh. 14 - Prob. 102QRTCh. 14 - Prob. 103QRTCh. 14 - Prob. 104QRTCh. 14 - Prob. 105QRTCh. 14 - Prob. 106QRTCh. 14 - When all the water is evaporated from a sodium...Ch. 14 - Prob. 108QRTCh. 14 - Prob. 109QRTCh. 14 - Prob. 110QRTCh. 14 - Prob. 111QRTCh. 14 - Prob. 112QRTCh. 14 - Prob. 113QRTCh. 14 - Prob. 114QRTCh. 14 - Prob. 115QRTCh. 14 - Prob. 116QRTCh. 14 - Home gardeners spread aluminum sulfate powder...Ch. 14 - Prob. 118QRTCh. 14 - Prob. 119QRTCh. 14 - Prob. 120QRTCh. 14 - Prob. 121QRTCh. 14 - Prob. 122QRTCh. 14 - Prob. 123QRTCh. 14 - Prob. 124QRTCh. 14 - Prob. 125QRTCh. 14 - A chilled carbonated beverage is opened and warmed...Ch. 14 - Prob. 127QRTCh. 14 - Explain why BrNH2 is a weaker base than ammonia,...Ch. 14 - Prob. 129QRTCh. 14 - Prob. 130QRTCh. 14 - At 25 C, a 0.10% aqueous solution of adipic acid,...Ch. 14 - Prob. 132QRTCh. 14 - Prob. 133QRTCh. 14 - Prob. 134QRTCh. 14 - Prob. 135QRTCh. 14 - Prob. 14.ACPCh. 14 - Develop a set of rules by which you could predict...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY