
Chemistry 2012 Student Edition (hard Cover) Grade 11
12th Edition
ISBN: 9780132525763
Author: Prentice Hall
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 31A
Interpretation Introduction
Interpretation: The elastic collision is to be defined.
Concept introduction:
A collision is any situation in which two or more objects quickly exert forces on one another. Collisions are of three types:
- Perfectly elastic collision
- Inelastic collision
- Perfectly inelastic collision
Expert Solution & Answer

Answer to Problem 31A
In an elastic collision, the colliding particles do not lose energy.
Explanation of Solution
Gas particle collisions are entirely elastic. In other words, when particles collide, there is neither a net gain nor a loss of kinetic energy. In other words, in an elastic collision, the colliding particles do not lose energy.
Thus, in an elastic collision, there is no loss of energy.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Chapter 13 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
Ch. 13.1 - Prob. 1SPCh. 13.1 - Prob. 2SPCh. 13.1 - Prob. 3LCCh. 13.1 - Prob. 4LCCh. 13.1 - Prob. 5LCCh. 13.1 - Prob. 6LCCh. 13.1 - Prob. 7LCCh. 13.1 - Prob. 8LCCh. 13.1 - Prob. 9LCCh. 13.2 - Prob. 10LC
Ch. 13.2 - Prob. 11LCCh. 13.2 - Prob. 12LCCh. 13.2 - Prob. 13LCCh. 13.2 - Prob. 15LCCh. 13.2 - Prob. 16LCCh. 13.2 - Prob. 17LCCh. 13.3 - Prob. 18LCCh. 13.3 - Prob. 19LCCh. 13.3 - Prob. 20LCCh. 13.3 - Prob. 21LCCh. 13.3 - Prob. 22LCCh. 13.3 - Prob. 23LCCh. 13.3 - Prob. 24LCCh. 13.4 - Prob. 25LCCh. 13.4 - Prob. 26LCCh. 13.4 - Prob. 27LCCh. 13.4 - Prob. 29LCCh. 13.4 - Prob. 30LCCh. 13 - Prob. 31ACh. 13 - Prob. 32ACh. 13 - Prob. 33ACh. 13 - Prob. 34ACh. 13 - Prob. 35ACh. 13 - Prob. 36ACh. 13 - Prob. 37ACh. 13 - Prob. 38ACh. 13 - Prob. 39ACh. 13 - Prob. 40ACh. 13 - Prob. 41ACh. 13 - Prob. 42ACh. 13 - Prob. 43ACh. 13 - Prob. 44ACh. 13 - Prob. 45ACh. 13 - Prob. 46ACh. 13 - Prob. 47ACh. 13 - Prob. 49ACh. 13 - Prob. 50ACh. 13 - Prob. 51ACh. 13 - Prob. 52ACh. 13 - Prob. 53ACh. 13 - Prob. 54ACh. 13 - Prob. 55ACh. 13 - Prob. 57ACh. 13 - Prob. 58ACh. 13 - Prob. 60ACh. 13 - Prob. 61ACh. 13 - Prob. 62ACh. 13 - Prob. 63ACh. 13 - Prob. 64ACh. 13 - Prob. 67ACh. 13 - Prob. 68ACh. 13 - Prob. 69ACh. 13 - Prob. 70ACh. 13 - Prob. 71ACh. 13 - Prob. 72ACh. 13 - Prob. 73ACh. 13 - Prob. 74ACh. 13 - Prob. 75ACh. 13 - Prob. 76ACh. 13 - Prob. 77ACh. 13 - Prob. 78ACh. 13 - Prob. 79ACh. 13 - Prob. 80ACh. 13 - Prob. 81ACh. 13 - Prob. 82ACh. 13 - Prob. 83ACh. 13 - Prob. 84ACh. 13 - Prob. 85ACh. 13 - Prob. 86ACh. 13 - Prob. 87ACh. 13 - Prob. 88ACh. 13 - Prob. 89ACh. 13 - Prob. 90ACh. 13 - Prob. 91ACh. 13 - Prob. 92ACh. 13 - Prob. 93ACh. 13 - Prob. 94ACh. 13 - Prob. 95ACh. 13 - Prob. 96ACh. 13 - Prob. 97ACh. 13 - Prob. 98ACh. 13 - Prob. 99ACh. 13 - Prob. 100ACh. 13 - Prob. 101ACh. 13 - Prob. 102ACh. 13 - Prob. 1STPCh. 13 - Prob. 2STPCh. 13 - Prob. 3STPCh. 13 - Prob. 4STPCh. 13 - Prob. 5STPCh. 13 - Prob. 6STPCh. 13 - Prob. 7STPCh. 13 - Prob. 8STPCh. 13 - Prob. 9STPCh. 13 - Prob. 10STP
Knowledge Booster
Similar questions
- Experiment 1 Data Table 1: Conservation of Mass - Initial Mass Data Table 1 Data Table 2 Data Table 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Reaction Mass of test tube and 5.0% HC₂H₂O2 (g) # (A) (B) Mass of NaHCO, (g) Mass of balloon and NaHCO, (g) (C) 0.10 1 0829 14.38g 0.20 2 0.929 14.29g 0.35 1.00g 3 14.25g 0.50 1.14g 14.29 Experiment 1 Data Table 2: Moles of HC2H3O2 Reaction Volume of Mass of Moles of HC₂H₂O₂ 5.0% Vinegar (g) (ML) 5.0 0.25 0042 mol 2 5.0 0.25 0042 mol 3 5.0 0.25 0042 mol 5.0 0.25 0042 mol Experiment 1 Data Table 3: Moles of NaHCO3 Reaction Mass of NaHCO (g) 10g 20g 35g 50g Experiment 1 Data Table 4: Theoretical Yield of CO₂ Reaction # 1 2 3 Experiment 1 Total mass before reaction (g) (D=A+C) 15.29 15.21g 15.25g 15.349 Exercise 1 Data Table 1 Data Table 2 Data Table 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Exercise 1- Data Table 1 Data Table 2 DataTable 3 Data Table 4 Panel 1 Photo 1 Data Table 5 Exercise 1- Moles of NaHCO 0012 mol 0025 mol 0044 mol 0062 mol…arrow_forwardThe chemical reaction you investigated is a two-step reaction. What type of reaction occurs in each step? How did you determine your answer?arrow_forwardWhat is the relationship between the limiting reactant and theoretical yield of CO2?arrow_forward
- From your calculations, which reaction experiment had closest to stoichiometric quantities? How many moles of NaHCO3 and HC2H3O2 were present in this reaction?arrow_forward18. Arrange the following carbocations in order of decreasing stability. 1 2 A 3124 B 4213 C 2431 D 1234 E 2134 SPL 3 4arrow_forwardAcetic acid is added to DI water at an initial concentration of 10 -6 M (Ka=1.8x10-5) A. Using the "ICE" Method, what would the pH be at equilibrium? State assumptions and show your work. B. Using the simultaneous equations method, what would the pH be at equilibrium? Show your workarrow_forward
- 1. Show that the change in entropy for a fixed amount of ideal gas held at a constant temperature undergoing a volume change is given by the simple equation AS = NkB In Hint: Start with the equation M dS = du + (Œ) dv - Ž (#) an, dU du+av-dN; j=1 Why doesn't the equation for the entropy of an ideal gas depend on the strength of the intermolecular forces for the gas?arrow_forward2. Make an ice cube at 1 bar pressure by freezing an amount of liquid water that is 2 cm x 2 cm x 2 cm in volume. The density of liquid water at 0 °C is 1.000 g cm³ and the density of ice at 0 °C is 0.915 g cm³. Note that this difference in density is the reason your water pipes burst if they freeze and why you shouldn't forget to take your bottle of pop out of the freezer if you put it in there to try and cool it down faster. A. What is the work of expansion upon freezing? B. Is work done on the system or by the system?arrow_forwardI have a excitation/emission spectra of a quinine standard solution here, and I'm having trouble interpreting it. the red line is emission the blue line is excitation. i'm having trouble interpreting properly. just want to know if there is any evidence of raman or rayleigh peaks in the spectra.arrow_forward
- Give the major product of the following reaction. excess 1. OH, H₂O 1.OH H CH3CH2CH21 H 2. A.-H₂O Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Template toolbars. The single bond is active by default.arrow_forward2. Use Hess's law to calculate the AH (in kJ) for: rxn CIF(g) + F2(g) → CIF 3 (1) using the following information: 2CIF(g) + O2(g) → Cl₂O(g) + OF 2(g) AH = 167.5 kJ ΔΗ 2F2 (g) + O2(g) → 2 OF 2(g) 2C1F3 (1) + 202(g) → Cl₂O(g) + 3 OF 2(g) о = = -43.5 kJ AH = 394.1kJarrow_forwardci Draw the major product(s) of the following reactions: (3 pts) CH3 HNO3/H2SO4 HNO3/ H2SO4 OCH3 (1 pts)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY