GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
7th Edition
ISBN: 9781305866966
Author: STOKER
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 13.10EP

What is the molecular formula for each of the following hydrocarbons?

  1. a. 5-carbon alkene with one double bond
  2. b. 5-carbon alkene with two double bonds
  3. c. 5-carbon cycloalkene with one double bond
  4. d. 5-carbon cycloalkene with two double bonds

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

Answer to Problem 13.10EP

The molecular formula of the given alkene is C5H10.

Explanation of Solution

Alkenes are one of the types of unsaturated hydrocarbon.  Alkenes contain double bond as the functional group.  General molecular formula of alkene which contains one double bond is CnH2n.

Given hydrocarbon in the problem statement is said to have 5-carbon alkene with one double bond.  Hence, “n” is 5.  Substituting it in the general molecular formula as shown below gives the molecular formula of alkene,

    CnH2nC5H(2*5)C5H10

Therefore, the molecular formula of alkene that contains five carbon atoms with a double bond is C5H10.

Conclusion

The molecular formula of the given alkene is identified.

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

Answer to Problem 13.10EP

The molecular formula of the given alkene is C5H8.

Explanation of Solution

Alkenes are one of the types of unsaturated hydrocarbon.  Alkenes contain double bond as the functional group.  General molecular formula of alkene which contains two double bonds is CnH2n-2.

Given hydrocarbon in the problem statement is said to have 5-carbon alkene with two double bonds.  Hence, “n” is 5.  Substituting it in the general molecular formula as shown below gives the molecular formula of alkene,

    CnH2n-2C5H(2*5)2C5H8

Therefore, the molecular formula of alkene that contains five carbon atoms with a double bond is C5H8.

Conclusion

The molecular formula of the given alkene is identified.

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

Answer to Problem 13.10EP

The molecular formula of the given cycloalkene is C5H8.

Explanation of Solution

Cycloalkenes are one of the types of unsaturated hydrocarbon.  Cycloalkenes contain double bond as the functional group.  General molecular formula of cycloalkene which contains one double bond is CnH2n-2.

Given hydrocarbon in the problem statement is said to have 5-carbon cycloalkene with one double bond.  Hence, “n” is 5.  Substituting it in the general molecular formula as shown below gives the molecular formula of cycloalkene,

    CnH2n-2C5H(2*5)-2C5H10-2C5H8

Therefore, the molecular formula of cycloalkene that contains five carbon atoms with a double bond is C5H8.

Conclusion

The molecular formula of the given cycloalkene is identified.

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

The molecular formula for the given hydrocarbon has to be identified.

Concept Introduction:

Hydrocarbons are the organic compounds that contain only hydrogen and carbon atoms.  Hydrocarbon derivatives are the one in which the compounds contain hydrogen and carbon atoms along with one or more additional elements.  The additional elements that can be present in hydrocarbon derivatives are oxygen, nitrogen, sulphur, chlorine, bromine etc.

Hydrocarbons are further classified into two categories.  They are saturated hydrocarbons and unsaturated hydrocarbons.  The hydrocarbons that contain single bonds between carbon atoms in the entire molecule is known as saturated hydrocarbon.  The hydrocarbons that contain atleast one double or triple bond between two carbon atoms in the entire molecule is known as unsaturated hydrocarbon.

Saturated hydrocarbons are alkanes.  Unsaturated hydrocarbons are alkene, alkyne and aromatic hydrocarbons.

Alkane has general molecular formula as CnH2n+2.  Alkene in which one double is present has general molecular formula as CnH2n.  Alkyne in which one triple bond is present has the general molecular formula as CnH2n-2.  Cycloalkanes have the general molecular formula as CnH2n.  Cycloalkenes in which one double bond is present have the general molecular formula as CnH2n-2.

Answer to Problem 13.10EP

The molecular formula of the given cycloalkene is C5H6.

Explanation of Solution

Cycloalkenes are one of the types of unsaturated hydrocarbon.  Cycloalkenes contain double bond as the functional group.  General molecular formula of cycloalkene which contains two double bonds is CnH2n-4.

Given hydrocarbon in the problem statement is said to have 5-carbon cycloalkene with two double bonds.  Hence, “n” is 5.  Substituting it in the general molecular formula as shown below gives the molecular formula of cycloalkene,

    CnH2n-4C5H(2*5)-4C5H10-4C5H6

Therefore, the molecular formula of cycloalkene that contains five carbon atoms with a double bond is C5H6.

Conclusion

The molecular formula of the given cycloalkene is identified.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the two questions below, draw the mechanism and form the major product.
Indicate similarities and differences between natural, exchanged and pillared clays.
Show work. don't give Ai generated solution

Chapter 13 Solutions

GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP

Ch. 13.3 - Prob. 4QQCh. 13.4 - Prob. 1QQCh. 13.4 - Prob. 2QQCh. 13.5 - Prob. 1QQCh. 13.5 - Prob. 2QQCh. 13.5 - Prob. 3QQCh. 13.6 - Prob. 1QQCh. 13.6 - Prob. 2QQCh. 13.6 - Prob. 3QQCh. 13.7 - Prob. 1QQCh. 13.7 - Prob. 2QQCh. 13.7 - Prob. 3QQCh. 13.8 - Prob. 1QQCh. 13.8 - Prob. 2QQCh. 13.9 - Prob. 1QQCh. 13.9 - Prob. 2QQCh. 13.10 - Prob. 1QQCh. 13.10 - Prob. 2QQCh. 13.10 - Prob. 3QQCh. 13.10 - Prob. 4QQCh. 13.10 - Prob. 5QQCh. 13.11 - Prob. 1QQCh. 13.11 - Prob. 2QQCh. 13.11 - Prob. 3QQCh. 13.11 - Prob. 4QQCh. 13.11 - Prob. 5QQCh. 13.12 - Prob. 1QQCh. 13.12 - Prob. 2QQCh. 13.12 - Prob. 3QQCh. 13.12 - Prob. 4QQCh. 13.12 - Prob. 5QQCh. 13.13 - Prob. 1QQCh. 13.13 - Prob. 2QQCh. 13.13 - Prob. 3QQCh. 13.14 - Prob. 1QQCh. 13.14 - Prob. 2QQCh. 13.14 - Prob. 3QQCh. 13.14 - Prob. 4QQCh. 13.15 - Prob. 1QQCh. 13.15 - Prob. 2QQCh. 13.15 - Prob. 3QQCh. 13.15 - Prob. 4QQCh. 13.16 - Prob. 1QQCh. 13.16 - Prob. 2QQCh. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Classify each of the following hydrocarbons as...Ch. 13 - Prob. 13.3EPCh. 13 - Prob. 13.4EPCh. 13 - Prob. 13.5EPCh. 13 - Prob. 13.6EPCh. 13 - Prob. 13.7EPCh. 13 - Prob. 13.8EPCh. 13 - Prob. 13.9EPCh. 13 - What is the molecular formula for each of the...Ch. 13 - Prob. 13.11EPCh. 13 - Prob. 13.12EPCh. 13 - What is wrong, if anything, with the following...Ch. 13 - Prob. 13.14EPCh. 13 - Prob. 13.15EPCh. 13 - Prob. 13.16EPCh. 13 - Prob. 13.17EPCh. 13 - Prob. 13.18EPCh. 13 - Draw a condensed structural formula for each of...Ch. 13 - Draw a condensed structural formula for each of...Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - The following names are incorrect by IUPAC rules....Ch. 13 - Prob. 13.23EPCh. 13 - Prob. 13.24EPCh. 13 - Prob. 13.25EPCh. 13 - Classify each of the following compounds as...Ch. 13 - Prob. 13.27EPCh. 13 - How many hydrogen atoms are present in a molecule...Ch. 13 - Prob. 13.29EPCh. 13 - Draw a line-angle structural formula for each of...Ch. 13 - Prob. 13.31EPCh. 13 - Prob. 13.32EPCh. 13 - Prob. 13.33EPCh. 13 - Prob. 13.34EPCh. 13 - Prob. 13.35EPCh. 13 - Prob. 13.36EPCh. 13 - Prob. 13.37EPCh. 13 - Prob. 13.38EPCh. 13 - For each of the following pairs of alkenes,...Ch. 13 - Prob. 13.40EPCh. 13 - Prob. 13.41EPCh. 13 - Prob. 13.42EPCh. 13 - Prob. 13.43EPCh. 13 - Prob. 13.44EPCh. 13 - Prob. 13.45EPCh. 13 - Prob. 13.46EPCh. 13 - For each molecule, indicate whether cistrans...Ch. 13 - For each molecule, indicate whether cistrans...Ch. 13 - Prob. 13.49EPCh. 13 - Prob. 13.50EPCh. 13 - Prob. 13.51EPCh. 13 - Draw a structural formula for each of the...Ch. 13 - Prob. 13.53EPCh. 13 - Prob. 13.54EPCh. 13 - Prob. 13.55EPCh. 13 - Prob. 13.56EPCh. 13 - Prob. 13.57EPCh. 13 - Prob. 13.58EPCh. 13 - Why is the number of carbon atoms in a terpene...Ch. 13 - How many isoprene units are present in a....Ch. 13 - Prob. 13.61EPCh. 13 - Indicate whether each of the following statements...Ch. 13 - Prob. 13.63EPCh. 13 - With the help of Figure 13-7, indicate whether...Ch. 13 - Prob. 13.65EPCh. 13 - Prob. 13.66EPCh. 13 - Prob. 13.67EPCh. 13 - Prob. 13.68EPCh. 13 - Prob. 13.69EPCh. 13 - Prob. 13.70EPCh. 13 - Prob. 13.71EPCh. 13 - Prob. 13.72EPCh. 13 - Prob. 13.73EPCh. 13 - Prob. 13.74EPCh. 13 - Prob. 13.75EPCh. 13 - Write a chemical equation showing reactants,...Ch. 13 - Supply the structural formula of the product in...Ch. 13 - Prob. 13.78EPCh. 13 - What reactant would you use to prepare each of the...Ch. 13 - Prob. 13.80EPCh. 13 - Prob. 13.81EPCh. 13 - Prob. 13.82EPCh. 13 - Prob. 13.83EPCh. 13 - Prob. 13.84EPCh. 13 - Prob. 13.85EPCh. 13 - Prob. 13.86EPCh. 13 - Prob. 13.87EPCh. 13 - Prob. 13.88EPCh. 13 - Prob. 13.89EPCh. 13 - Prob. 13.90EPCh. 13 - Prob. 13.91EPCh. 13 - Prob. 13.92EPCh. 13 - Prob. 13.93EPCh. 13 - What are the bond angles about the triple bond in...Ch. 13 - Prob. 13.95EPCh. 13 - Prob. 13.96EPCh. 13 - Prob. 13.97EPCh. 13 - Prob. 13.98EPCh. 13 - Prob. 13.99EPCh. 13 - Prob. 13.100EPCh. 13 - Prob. 13.101EPCh. 13 - Prob. 13.102EPCh. 13 - Prob. 13.103EPCh. 13 - Prob. 13.104EPCh. 13 - Prob. 13.105EPCh. 13 - Prob. 13.106EPCh. 13 - Prob. 13.107EPCh. 13 - Prob. 13.108EPCh. 13 - Assign each of the compounds in Problem 13-107 an...Ch. 13 - Assign each of the compounds in Problem 13-108 an...Ch. 13 - Prob. 13.111EPCh. 13 - Prob. 13.112EPCh. 13 - Prob. 13.113EPCh. 13 - Prob. 13.114EPCh. 13 - Prob. 13.115EPCh. 13 - Write a structural formula for each of the...Ch. 13 - Eight isomeric substituted benzenes have the...Ch. 13 - Prob. 13.118EPCh. 13 - Prob. 13.119EPCh. 13 - Prob. 13.120EPCh. 13 - Prob. 13.121EPCh. 13 - Prob. 13.122EPCh. 13 - Prob. 13.123EPCh. 13 - Prob. 13.124EPCh. 13 - Prob. 13.125EPCh. 13 - For each of the following classes of compounds,...Ch. 13 - Prob. 13.127EPCh. 13 - Prob. 13.128EPCh. 13 - Prob. 13.129EPCh. 13 - Prob. 13.130EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License