
Concept explainers
The mean, mode and median of grams of fat per serving

Answer to Problem 10SGR
Grams of fat per serving
Mean:
Median:
Mode:
Explanation of Solution
Given:
Grams of fat per serving:
Concept Used:
Mean is given by the following expression:
Where,
Sum of data point:
Number of data point:
Median:
To find the median of the data points, the arrangement of numbers from the least to greatest has to be used.
For the even number of system, the mean of middle two numbers has to calculated which nothing but a median of even data
In case of odd numbers system take middle one number which is the median of system.
Mode:
The number which occurs most of times in the system is known as the mode.
Calculation:
Mean of the given grams of fat per servingis calculated as:
Median of grams of fat per servingis calculated as:
Take the grams of fat per serving from the least to greatest:
Here is an even number of system, so take the mean of middle two numbers which nothing but a median of even data.
So, the median of the even number system is
Mode of grams of fat per serving is calculated as:
In the given number system, the number
So, the number
Conclusion:
Hence,the results of given grams of fat per serving are as:
Mean:
Median:
Mode:
Chapter 13 Solutions
Pre-Algebra, Student Edition
Additional Math Textbook Solutions
College Algebra (7th Edition)
Elementary Statistics: Picturing the World (7th Edition)
Thinking Mathematically (6th Edition)
A First Course in Probability (10th Edition)
Elementary Statistics (13th Edition)
- Safari File Edit View History Bookmarks Window Help Ο Ω OV O mA 0 mW ర Fri Apr 4 1 222 tv A F9 F10 DII 4 F6 F7 F8 7 29 8 00 W E R T Y U S D பட 9 O G H J K E F11 + 11 F12 O P } [arrow_forwardSo confused. Step by step instructions pleasearrow_forwardIn simplest terms, Sketch the graph of the parabola. Then, determine its equation. opens downward, vertex is (- 4, 7), passes through point (0, - 39)arrow_forward
- In simplest way, For each quadratic relation, find the zeros and the maximum or minimum. a) y = x 2 + 16 x + 39 b) y = 5 x2 - 50 x - 120arrow_forwardIn simplest terms and step by step Write each quadratic relation in standard form, then fi nd the zeros. y = - 4( x + 6)2 + 36arrow_forwardIn simplest terms and step by step For each quadratic relation, find the zeros and the maximum or minimum. 1) y = - 2 x2 - 28 x + 64 2) y = 6 x2 + 36 x - 42arrow_forward
- Write each relation in standard form a)y = 5(x + 10)2 + 7 b)y = 9(x - 8)2 - 4arrow_forwardIn simplest form and step by step Write the quadratic relation in standard form, then fi nd the zeros. y = 3(x - 1)2 - 147arrow_forwardStep by step instructions The path of a soccer ball can be modelled by the relation h = - 0.1 d 2 + 0.5 d + 0.6, where h is the ball’s height and d is the horizontal distance from the kicker. a) Find the zeros of the relation.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education





