VECTOR MECH. FOR EGR: STATS & DYNAM (LL
12th Edition
ISBN: 9781260663778
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.1, Problem 12.71P
The parasailing system shown uses a winch to let rope out at a constant rate so that the 70-kg rider moves away from the boat, which is traveling with a constant velocity. At the instant shown, the rope has a length of 30 m, it is increasing in length at a constant 1 m/s, the angle is increasing at a rate of 0.05 rad/s, and
Fig. P12.71
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Dynamic Lecture:
The 2 kg BC ring can only move left and right on the frictionless rigid arm. Ring BC is connected to springs with spring constants k = 300 N / m and k ′ = 200 N / m at points AB and CD. The unstretched length of both springs is 600 mm. Since it is known that the springs are not tensioned and starts from rest, find the velocity of the ring BC at the moment when the external force F is applied 200 mm.
EXERCISE 3.48 While the tank is moving forward at a
constant speed vc = 30 km/h, the turret is rotating at the
constant rate @1 = 0.3 rad/s and the barrel is being raised at
the constant rate = 0.5 rad/s. At a certain instant the barrel
is facing forward and 0= 15°. At this instant a shell whose
mass is 80 kg is about to emerge from the barrel with a
muzzle velocity Vrel = 5500 km/h that has reached a
maximum because the internal propulsive pressure within the barrel has been dissipated.
Determine the force exerted by the shell on the wall of barrel at this instant.
(Hint: attach frame xyz to the barrel, make the end point of the barrel as its origin. Axis x is along
the barrel leftward. z axis is on the plane upward.)
Vrel
6 m
10
2 m
001
A 2.9-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed
of 8.0 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate v at
which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible.
3.1'
Answers:
N =
i
v=
lb
ft/sec²
Chapter 12 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 2.8-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 7.8 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate v at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. 28 2.2' Answers: N = i Ib v= i ft/sec?arrow_forwardQ2) The slotted arm pivots about O and maintains the relation between the motions of sliders A and B and their control rods. Each small pivoted block is pinned to its respective slider and is constrained to slide in its rotating slot. Show that the displacement x is proportional to the reciprocal of y. Then estab- lish the relation between the velocities vA and vg. Also, if v, is constant for a short interval of motion, determine the acceleration of B. b y 'Barrow_forward7. The 400-lb cylinder at A is hoisted using the motor and the pulley system shown. If the speed of point B on the cable is increased at a constant rate from zero to vg = 10/s in t = 5 s, determine the tension in the cable at B to cause the motion. (Practice at Home) B Aarrow_forward
- A 1.4-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 8.2 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate v at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. B 32 3.1' Answers: N = i Ib i ft/sec?arrow_forwardA rocket is traveling at an altitude at which the gravitational acceleration is known to be g = 26.5 ft/s². The thrust on the rocket produces an acceleration of ar = 29.3 ft/s² along the axis of the rocket. At the position shown (0 = 36.87 degrees) the speed of the rocket is known to be v = 2800 ft/s. Determine: (a) the rate of change of speed of the rocket at this instant (b) the radius of curvature for the rocket's path at this instant GTarrow_forwardA robot arm moves in the vertical plane so that the 0.14-kg cylinder P travels in a circle about point B, which is not moving. Know that arm BP starts from rest in a horizontal position and that the speed of Pincreases at a constant rate of 200 mm/s². 0.8 m Draw the free-body diagram of the cylinder P that is required to determine the force acting on the cylinder. (You must provide an answer before moving on to the next part.) 0.8 m P 1 Iarrow_forward
- A 1.2-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 10.2 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate i at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. 26 1.6' Answers: N = i Ib i ft/sec2arrow_forwardA small ball swings in a horizontal circle at the end of a cord of length l1 , which forms an angle 01 with the vertical. The cord is then slowly drawn through the support at O until the length of the free end is l2. (a) Derive a relation among l1, l2, 01, and 02. (b) If the ball is set in motion so that initially l1 = 0.8 m and 01 = 35°, determine the angle 02 when l2= 0.6 m.arrow_forward7. The 540-lb cylinder at A is hoisted using the motor and the pulley system shown. The speed of point B on the cable is increased at a constant rate from zero to Bv_B = 30 ft/sft/s in t = 9 sarrow_forward
- Problem 2.841 Cars A and B are traveling at V 72 mph and va 67 mph, respectively, when the driver of car B applies the brakes abruptly, causing the car to slide to a stop. The driver of car A takes 1.5s to react to the situation and applies the brakes in turn, causing car A to slide as well. If A and B slide with equal accelerations, i.e., SA = -g, where p = 0.83 is the kinetic friction coefficient and g is the acceleration of gravity, compute the minimum distance ď between A and B at the time B starts sliding to avoid a collision.arrow_forwardThe nozzle shown discharges water at the rate of 40 ft3/min. Knowing that at both A and B the stream of water moves with a velocity of magnitude 75 ft/s and neglecting the weight of the vane, determine the components of the reactions at C and D.arrow_forward6. Exercise 2.5.32 Block A is observed to be dropping down at a steady 0.9 ft/s. At what velocity must the free end of the pulley be moving? Larrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License