VECTOR MECH. FOR EGR: STATS & DYNAM (LL
12th Edition
ISBN: 9781260663778
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.2, Problem 12.83P
A satellite is placed into a circular orbit about the planet Saturn at an altitude of 2100 mi. The satellite describes its orbit with a velocity of 54.7 × 103 mi/h. Knowing that the radius of the orbit about Saturn and the periodic time of Atlas, one of Saturn’s moons, are 85.54 × 103 mi and 0.6017 days, respectively, determine (a) the radius of Saturn, (b) the mass of Saturn. (The periodic time of a satellite is the time it requires to complete one full revolution about the planet.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A spacecraft approaching the planet Saturn reaches point A with a velocity vA of magnitude 68.8 × 103 ft/s. It is to be placed in an elliptic orbit about Saturn so that it will be able to periodically examine Tethys, one of Saturn’s moons. Tethys is in a circular orbit of radius 183 × 103 mi about the center of Saturn, traveling at a speed of 37.2 × 103 ft/s. Determine (a) the decrease in speed required by the spacecraft at A to achieve the desired orbit, (b) the speed of the spacecraft when it reaches the orbit of Tethys at B.
A satellite describes an elliptic orbit of minimum altitude 606 km
above the surface of the earth. The semimajor and semiminor axes
are 17,440 km and 13,950 km, respectively. Knowing that the speed
of the satellite at Point C is 4.78 km/s, determine (a) the speed at
Point A, the perigee, (b) the speed at Point B, the apogee.
606 km
R = 6370 km
13 950 km
B,
A
17 440 km
17 440 km
Communication satellites are placed in a geosynchronous orbit, i.e., in a circular orbit such that they complete one full revolution about the earth in one sidereal day (23.934 h), and thus appear stationary with respect to the ground. Determine (a) the altitude of these satellites above the surface of the earth, (b) the velocity with which they describe their orbit. Give the answers in both SI and U.S. customary units.
Chapter 12 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A space vehicle is in a circular orbit of 2200-km radius around the moon. To transfer it to a smaller circular orbit of 2080-km radius, the vehicle is first placed on an elliptic path AB by reducing its speed by 26.3 m/s as it passes through A . Knowing that the mass of the moon is 73.49 × 1021 kg, determine (a) the speed of the vehicle as it approaches B on the elliptic path, (b) the amount by which its speed should be reduced as it approaches B to insert it into the smaller circular orbit.arrow_forwardAt engine burnout on a mission, a shuttle had reached point A at an altitude of 40 mi above the surface of the earth and had a horizontal velocity v0. Knowing that its first orbit was elliptic and that the shuttle was transferred to a circular orbit as it passed through point B at an altitude of 170 mi, determine (a) the time needed for the shuttle to travel from A to B on its original elliptic orbit, (b) the periodic time of the shuttle on its final circular orbit.arrow_forwardA space probe is to be placed in a circular orbit of radius 4o00 km about the planet Mars. As the probe reaches A, the point of its original trajectory closest to Mars, it is inserted into a first elliptic transfer orbit by reducing its speed. This orbit brings it to Point B with a much reduced velocity. There the probe is inserted into a second transfer orbit by further reducing its speed. Knowing that the mass of Mars is 0.1074 times the mass of the earth, that ra= 9004 km and rg= 180 004 km, and that the probe approaches A on a parabolic trajectory, determine the time needed for the space probe to travel from A to Bon its first transfer orbit. Approach trajectory Second transfer orbit В 4000 km First transfer orbit The time needed for the space probe to travel from A to B on its first transfer orbit is |h.arrow_forward
- While describing a circular orbit, 185 mi above the surface of the earth, a space shuttle ejects at point A an inertial upper stage (IUS) carrying a communications satellite to be placed in a geosynchronous orbit (see Prob. 13.87) at an altitude of 22,230 mi above the surface of the earth. Determine (a) the velocity of the IUS relative to the shuttle after its engine has been fired at A,( b) the increase in velocity required at B to place the satellite in its final orbit.Reference to Problem 13.87:arrow_forwarddetermine (a) the speed of the vehich as it approaches B on the elliptic path, (b) the amount by which its speed should be reduced as it approaches B to insert it into the smaller circular orbit.arrow_forwardA space probe is to be placed in a circular orbit of 5600-mi radius about the planet Venus in a specified plane. As the probe reaches A, the point of its original trajectory closest to Venus, it is inserted in a first elliptic transfer orbit by reducing its speed by ΔvA. This orbit brings it to point B with a much reduced velocity. There the probe is inserted in a second transfer orbit located in the specified plane by changing the direction of its velocity and further reducing its speed by ΔvB. Finally, as the probe reaches point C, it is inserted in the desired circular orbit by reducing its speed by ΔvC. Knowing that the mass of Venus is 0.82 times the mass of the earth, that rA = 9.3 × 103 mi and rB = 190 × 103 mi, and that the probe approaches A on a parabolic trajectory, determine by how much the velocity of the probe should be reduced (a) at A, (b) at B, (c) at C.arrow_forward
- A spacecraft is placed into a polar orbit about the planet Mars at an altitude of 380 km. Knowing that the mean density of Mars is 3.94 Mg/m^3 and that the radius of Mars is 3397 km, determine the time t required for the spacecraft to complete one full revolution about Mars and the velocity with which the the spacecraft describes its orbit.arrow_forwardIt was observed that during the Galileo spacecraft’s first flyby of the earth, its minimum altitude was 600 mi above the surface of the earth. Assuming that the trajectory of the spacecraft was parabolic, determine the maximum velocity of Galileo during its first flyby of the earth.arrow_forwardA 500-kg spacecraft first is placed into a circular orbit about the earth at an altitude of 4500 km and then is transferred to a circular orbit about the moon. Knowing that the mass of the moon is 0.01230 times the mass of the earth and that the radius of the moon is 1737 km, determine (a) the gravitational force exerted on the spacecraft as it was orbiting the earth, (b) the required radius of the orbit of the spacecraft about the moon if the periodic times (the periodic time of a satellite is the time it requires to complete one full revolution about the planet) of the two orbits are to be equal, (c) the acceleration of gravity at the surface of the moon.arrow_forward
- A long-range ballistic trajectory between points A and B on the earth’s surface consists of a portion of an ellipse with the apogee at point C. Knowing that point C is 1500 km above the surface of the earth and the range Rφ of the trajectory is 6000 km, determine (a) the velocity of the projectile at C, (b) the eccentricity ε of the trajectory.arrow_forwardHow much energy per pound should be imparted to a satellite in order to place it in a circular orbit at an altitude of (a) 400 mi, (b) 4000 mi?arrow_forwardA spacecraft of mass m describes a circular orbit of radius ị around the earth. (a) Show that the additional energy AE that must be imparted to the spacecraft to transfer it to a circular orbit of larger radius r, is GMm(r2 – r¡) ΔΕ= where M is the mass of the earth. (b) Further show that if the transfer from one circular orbit to the other is executed by placing the space- craft on a transitional semielliptic path AB, the amounts of energy AE, and AEg which must be imparted at A and B are, respectively, proportional to r, and r¡: ΔΕΞ ΔΕΔΕ, ΔΕarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dimensional Analysis - in physics; Author: Jennifer Cash;https://www.youtube.com/watch?v=c_ZUnEUlTbM;License: Standard youtube license