The flat-bed trailer carries two 1500-kg beams with the upper beam secured by a cable. The coefficients of static friction between the two beams and between the lower beam and the bed of the trailer are 0.25 and 0.30, respectively. Knowing that the load does not shift, determine ( a ) the maximum acceleration of the trailer and the corresponding tension in the cable, ( b ) the maximum deceleration of the trailer. Fig. P12.20
The flat-bed trailer carries two 1500-kg beams with the upper beam secured by a cable. The coefficients of static friction between the two beams and between the lower beam and the bed of the trailer are 0.25 and 0.30, respectively. Knowing that the load does not shift, determine ( a ) the maximum acceleration of the trailer and the corresponding tension in the cable, ( b ) the maximum deceleration of the trailer. Fig. P12.20
The flat-bed trailer carries two 1500-kg beams with the upper beam secured by a cable. The coefficients of static friction between the two beams and between the lower beam and the bed of the trailer are 0.25 and 0.30, respectively. Knowing that the load does not shift, determine (a) the maximum acceleration of the trailer and the corresponding tension in the cable, (b) the maximum deceleration of the trailer.
A piston–cylinder device contains 3 kg of nitrogen initially at 100 kPa and 25°C. Nitrogen is now compressed slowly in a polytropic process during which PV1.3 = constant until the volume is reduced by one-half. Determine the work done and the heat transfer for this process. The gas constant of N2 is R = 0.2968 kPa·m3/kg·K. The cv value of N2 at the anticipated average temperature of 350 K is 0.744 kJ/kg·K (Table A-2b).
The work done for this process is kJ.
The heat transfer for this process is kJ.
A 4-m × 5-m × 6-m room is to be heated by a baseboard resistance heater. It is desired that the resistance heater be able to raise the air temperature in the room from 5 to 25°C within 10 min. Assuming no heat losses from the room and an atmospheric pressure of 100 kPa, determine the required power of the resistance heater. Assume constant specific heats at room temperature. The properties of air are R = 0.287 kJ/kg·K and cv = 0.718 kJ/kg·K (Table A-2a).
The required power of the resistance heater is kW.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.