VECTOR MECH. FOR EGR: STATS & DYNAM (LL
12th Edition
ISBN: 9781260663778
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12.1, Problem 12.1FBP
Crate A is gently placed with zero initial velocity onto a moving conveyor belt. The coefficient of kinetic friction between the crate and the belt is μk. Draw the free-body diagram (FBD) and kinetic diagram (KD) for A immediately after it contacts the belt.
Fig. P12.F1
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 5.18
22. An engine block of mass M is on the flatbed of a pickup truck that is traveling in
a straight level road with an initial speed of 32 m/s. The coefficient of static
friction between the block and the bed is µs = 0.5. Find the minimum distance in
which the truck can come to a stop without the engine block sliding toward the
cab.
114.38 m
с. 124.38 m
d. 134.38 m
a.
b.
104.38 m
A belt of negligible mass passes between cylinders A and B and is pulled to the right with a force P. Cylinders A and B weigh, respectively, 5 and 20 lb. The shaft of cylinder A is free to slide in a vertical slot and the coefficients of friction between the belt and each of the cylinders are µs = 0.50 and µk = 0.40. For P = 3.6 lb, determine (a) whether slipping occurs between the belt and either cylinder, (b) the angular acceleration of each cylinder.
Parvinbhai
Chapter 12 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Ch. 12.1 - A 1000-lb boulder B is resting on a 200-lb...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Blocks A and B are released from rest in the...Ch. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Two blocks weighing WA and WB are at rest on a...Ch. 12.1 - Objects A, B, and C have masses mA, mB, and mC,...Ch. 12.1 - Prob. 12.4FBPCh. 12.1 - Blocks A and B have masses mA and mB,...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Prob. 12.9FBPCh. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Disk A rotates in a horizontal plane about a...Ch. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - The acceleration due to gravity on Mars is 3.75...Ch. 12.1 - The value of g at any latitude may be obtained...Ch. 12.1 - A Global Positioning System (GPS) satellite is in...Ch. 12.1 - Prob. 12.4PCh. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - Prob. 12.9PCh. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction between the load and...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Prob. 12.15PCh. 12.1 - Prob. 12.16PCh. 12.1 - A 5000-lb truck is being used to lift a 1000-lb...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - The flat-bed trailer carries two 1500-kg beams...Ch. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck,...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - An airplane has a mass of 25 Mg and its engines...Ch. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - A constant force P is applied to a piston and rod...Ch. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Block A has a mass of 10 kg, and blocks B and C...Ch. 12.1 - Prob. 12.29PCh. 12.1 - Prob. 12.30PCh. 12.1 - A 10-lb block B rests as shown on a 20-lb bracket...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - Knowing that k = 0.30, determine the acceleration...Ch. 12.1 - The 30-lb block B is supported by the 55-lb block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer throwers practice swings, the...Ch. 12.1 - Human centrifuges are often used to simulate...Ch. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Prob. 12.41PCh. 12.1 - The 0.5-kg flyballs of a centrifugal governor...Ch. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - Prob. 12.44PCh. 12.1 - During a high-speed chase, a 2400-lb sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - Prob. 12.51PCh. 12.1 - A curve in a speed track has a radius of 1000 ft...Ch. 12.1 - Tilting trains, such as the Acela Express that...Ch. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - Prob. 12.56PCh. 12.1 - A turntable A is built into a stage for use in a...Ch. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - A small 8-oz collar D can slide on portion AB of a...Ch. 12.1 - A small block B fits inside a slot cut in arm OA...Ch. 12.1 - The parallel-link mechanism ABCD is used to...Ch. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer is...Ch. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Show that the radius r of the moons orbit can be...Ch. 12.2 - Communication satellites are placed in a...Ch. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - A 500-kg spacecraft first is placed into a...Ch. 12.2 - A space vehicle is in a circular orbit of 2200-km...Ch. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1-kg collar can slide on a horizontal rod that...Ch. 12.2 - Two 2.6-lb collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass mC is being...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - Prob. 12.94PCh. 12.3 - Prob. 12.95PCh. 12.3 - A particle with a mass m describes the path...Ch. 12.3 - A particle of mass m describes the parabola y =...Ch. 12.3 - Prob. 12.98PCh. 12.3 - Prob. 12.99PCh. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.103PCh. 12.3 - Prob. 12.104PCh. 12.3 - Prob. 12.105PCh. 12.3 - Halleys comet travels in an elongated elliptic...Ch. 12.3 - Prob. 12.109PCh. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - The Clementine spacecraft described an elliptic...Ch. 12.3 - A space probe is describing a circular orbit of...Ch. 12.3 - Prob. 12.115PCh. 12.3 - A space shuttle is describing a circular orbit at...Ch. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L = 1.2 m...Ch. 12 - A 500-lb crate B is suspended from a cable...Ch. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - The radius of the orbit of a moon of a given...Ch. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
6–1C A mechanic claims to have developed a car engine that runs on water instead of gasoline. What is your resp...
Thermodynamics: An Engineering Approach
Find the change in length of side AB.
Mechanics of Materials, 7th Edition
Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to the Internet, an...
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Compute the hydraulic radius for a circular drain pipe running half full if its inside diameter is 300 mm.
Applied Fluid Mechanics (7th Edition)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A slowly moving conveyor belt passes through a small opening in a wall which is high enough to accommodate a single package, but a reckless worker stacks two packages on the belt. The one at the bottom, package 1 which has mass m1m1, continues, without slipping against the belt, through the opening. (The belt continues without slowing.) The one on the the top, package 2 with mass m2m2, presses firmly against the wall and slips across the lower package. The same coefficients of friction, μsμs and μkμk, apply between the pair of packages and between the package and the belt. Weights, if required, will be denoted with the corresponding subscript of the package as F⃗ g,iF→g,i, for i=1,2i=1,2. The normal force exerted by object aa on object bb, if required, will be denoted as F⃗ n,a→bF→n,a→b for a,b∈{1,2,belt,wall}a,b∈{1,2,belt,wall}, but a≠ba≠b. The force of kinetic friction exerted by object aa on object bb, if required, will be denoted as F⃗ k,a→bF→k,a→b for…arrow_forward(e) Two blocks X and Y are connected by a light and inextensible string as shown in the figure below. The string passes over a light and smooth pulley. Block Y has a larger mass than block X. Assuming that the friction between block Y and the inclined plane is negligible, describe and explain the motion of the two blocks when the blocks are released. 30 degarrow_forward1. The coefficients of static and kinetic friction between the 100 – kg block and the inclined plane are 0.30 and 0.20, respectively. Determine (a) the friction force F acting on the block when P is applied with a magnitude of 200 N to the block at rest (b) the force P required to initiate motion up the incline from rest, and (c) the friction force F acting on the block if P = 600N P 100 kg 20° Hs = 0.30 Hk = 0.20 15°arrow_forward
- PRACTICE PROBLEM 9.3 two minecarts are connected as shown below. Friction is negligible. If you know that: Minecart 1 mass=8 kilograms Mine cart 1 velocity = 3 m/s to the right Minecart 2 mass=4 kilograms • Minecart 2 velocity = 3 m/s to the left MM. • Minecart 2 will stick to minecart 1 upon impact via the spring on minecart 2. This spring has a constant (k) =8 N/m Minecart 2 is 10 meters away from the wall. Differential eq: *-[]; = • Time (t)=0 is when the mine carts collide and stick together. x1 and x2 is the displacement of minecart 1 and 2 respectively from its original position at t=0 Solution: z1(t) wall. Make a second order differential equations system that models the situation and find the solution to the system you make. 10m x₂(t) =arrow_forwardThe contraption shown below consists of two masses connected by a string of negligible mass through a massless pulley. A spring with constant k is placed so that its equilibrium position is located a distance h below the bottom of mass m2. There is no friction either in the pulley or between the surfaces of the masses and the platform. When the two masses m¡ and m2 are released from rest, mass m2 begins falling and pulls mass m¡ up the ramp. a) Find an expression for the maximum compression of the spring d caused by mass m2 when it hits the spring. Your answer should be in terms of the m2 variables given (and g). b) On the axes below, make sketches of the kinetic energy (K), gravitational potential energy (Ugav), and elastic potential energy (Ua) of the system as a function of the height of m2, where y = 0 is defined as the point where mass m2 collides with the spring. Note that the left- hand edge of the axis is the height h, and the right-hand edge of the axis is the height -d. -d…arrow_forwardBlock A of Fig.(3) weighs 100N and block B weighs 300N. The coefficient of static friction between the blocks is 0.5, and the coefficient of kinetic friction between block B and the plane is 0.25. Determine the max. value of (P) that may be applied without causing block A to slide on block B when block B is moving to the left. (The gravitational acceleration is 10 m/s?) P. AT00 24 300 Fig.(3) m.ax Good Luck Pt N ray 2-2 B.arrow_forward
- A 10-lb bock is resting on an inclined surface at an angle of 30°, as shown. The block is in contact with a compressed spring that has a modulus of 75lb/in. The spring has an initial compression of 6 inches that is released by cutting the restraining cords. If the coefficient of kinetic friction between the inclined surface and the block is 0.15, determine the speed of the block as it leaves the spring. Position B L. Position A Position C 6 in, Restraining cords ww. H = 0.15 k = 75 lb/in 30°arrow_forwardKnowing that the coefficient of static friction between the tires and the road is 0.80 for the car as shown in figure 2. At this car, suddenly brakes are applied when it was moving with velocity of 360 inch/sec and it skidded to rest in 240 inch. Determine the magnitude of the normal reaction and of the friction force in the terms of W(weight) at each wheel as the car skidded to rest. { Use m=w/g, for the mass of the car if required, where g=386.09inch/s2.}arrow_forwardEx.4 The coefficients of static and kinetic friction between the 100-kg block and the inclined plane are 0.30 and 0.20, respectively. Determine (a) the friction force F acting on the block when P is applied with a magnitude of 200 N to the block at rest, (b) the force P required to initiate motion up the incline from rest, and (c) the friction force F acting on the block if P = 600 N. 100 kg 200 H, = 0.30 HA = 0.20 15° LEC.4 FRICTIONarrow_forward
- Three packages each of weight m = 9 kg A, B, and C are placed on a conveyor belt that is at rest. Between the belt and both packages A and C, the coefficients of friction are Ms = 0.30 and Mk = 0.20; between package B and the belt, the coefficients are Ms = 0.10 and Mk = 0.08. The packages are placed on the belt so that they are in contact with each other and at rest. Determine which, if any, of the packages will move and the friction force acting on each package. The frictional force acting on A is N The frictional force acting on B is N The frictional force acting on C is N Note: please show correct step by step working out. And double check final answers. Also for frictional force A, B & C show their directions as well. Thanks!arrow_forwardHow to get the correct answerarrow_forwardThe carnival ride from Prob 12.51 is modified so that the 80-kg riders can move up and down the inclined wall as the speed of the ride increases. Knowing that the coefficient of static friction between the wall and the platform is 0.2, determine the range of values of the constant speed v0 for which the platform will remain at h = 1.5 m.Reference to Problem 12.51:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License