Concept explainers
A 0.5-kg block B slides without friction inside a slot cut in arm OA that rotates in a vertical plane. The rod has a constant angular acceleration
Fig. P12.69
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Additional Engineering Textbook Solutions
Engineering Mechanics: Dynamics (14th Edition)
Fundamentals of Heat and Mass Transfer
Engineering Mechanics: Statics
DESIGN OF MACHINERY
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Vector Mechanics for Engineers: Statics, 11th Edition
- A 0.5-kg block B slides without friction inside a slot cut in arm OA that rotates in a vertical plane. The rod has a constant angular acceleration 0= 10 rad/s2. Knowing that when 0= 45° and r= 0.8 m the velocity of the block is zero, determine at this instant, (a) the force exerted on the block by the arm, (b) the relative acceleration of the block with respect to the arm.arrow_forwardA uniform rod BC of mass 4 kg is connected to a collar A by a A 250 mm 250-mm cord AB. Neglecting the mass of the collar and cord, determine (a) the smallest constant acceleration aa for which the cord and the rod lie in a straight line, (b) the corresponding В 400 mm tension in the cord. 350 mm Carrow_forwardA 50 Ib block A is attached to a wire that is wrapped around the shown flywheel of 30" radius and I = 12 ft-lb-s². The system is released from the rest. Neglect the effect of friction, determine (a) the acceleration of the block A, (b) the speed of the block A after it has moved 10 ft. Aarrow_forward
- A uniform rod BC of mass 10 kg is connected to a collar A by a 350-mm cord AB. Neglecting the mass of the collar and cord, determine (a) the smallest constant acceleration a for which the cord and the rod will lie in a straight line, (b) the corresponding tension in the cord. Hint: The smallest constant acceleration is attained when point C of the rod is about to leave the floor. ад A 350 mm 650 mm C B 450 mmarrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. Answers: a= 0 = IN PI 771 m/s² rad/s²arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = 0= IN P 77 M m/s² rad/s²arrow_forward
- Two steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b= 111 mm. A horizontal force of magnitude F= 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = O = IN 7. 77 M m/s² rad/s²arrow_forwardA 1.8-kg collar A and a 0.7-kg collar B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about its vertical axis of symmetry. The two collars are connected by a cord running over a pulley that is attached to the frame at O. At the instant shown, the velocity vA of Collar A has a magnitude of 2.1 m/s and a stop prevents collar B from moving. The stop is suddenly removed and collar A moves toward E. As it reaches a distance of 0.12 m from, the magnitude of its velocity is observed to be 2.5 m/s. Determine at that instant the magnitude of the angular velocity of the frame and the moment of inertia of the frame and pulley system about CD.arrow_forward* Incorrect A 2.9-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 8.0 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. 3.1' ACO Answers: N = v= i -0.848 -16.73 lb ft/sec²arrow_forward
- Two friction disks A and B are to be brought into contact without slipping when the angular velocity of disk A is 240 rpm counterclockwise. Disk A starts from rest at time t= 0 and is given a constant angular acceleration with a magnitude a. Disk B starts from rest at time t= 2 s and is given a constant clockwise angular acceleration, also with a magnitude a. Determine (a) the required angular acceleration magnitude a, (b) the time at which the contact occurs.arrow_forwardA 12-lb block B rests as shown on the upper surface of a 30-lb wedge A. Neglecting friction, determine immediately after the system is released from rest (a) the acceleration of A, (b) the acceleration of B relative to A.arrow_forward8. A block (mass m1) lying on a frictionless inclined plane is connected to a mass m2 by a massless cord passing over a pulley. (a) Determine a formula for the acceleration of the system of the two blocks in terms of m1, m2, Theta, and g. (b ) What conditions apply to masses m1, and m2 for the acceleration to be in one direction (say m1 down the plan) or in the opposite direction ?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY