Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 5P
(II) Calculate the forces FA and FB that the supports exert on the diving board of Fig. 12–49 when a 52-kg person stands at its tip. (a) Ignore the weight of the board. (b) Take into account the board’s mass of 28 kg. Assume the board’s CG is at its center.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule10:56
Students have asked these similar questions
(II) Assume the supports of the uniform cantilever shown in
Fig. 9–76 (m = 2900 kg) are made of wood. Calculate the
minimum cross-sectional area required of each, assuming
a safety factor of 9.0.
FB
20.0 m
– 30.0 m-
CG
FIGURE 9–76
Problem 54.
(II) A uniform steel beam has a mass of 940 kg. On it is
resting half of an identical beam, as shown in Fig. 9-60.
What is the vertical support force at each end?
•M
•M
(II) A 20.0-m-long uniform beam weighing 650 N rests on
walls A and B, as shown in Fig. 9–62. (a) Find the maxi-
mum weight of a person who can walk to the extreme
end D without tipping the beam. Find the forces that the
walls A and B exert on the beam when the person is stand-
ing: (b) at D; (c) 2.0 m to the right of A.
- 20.0 m-
A
В
D
+3.0 m→
-12.0 m -
FIGURE 9-62 Problem 22.
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How is sublimation different from evaporation?
Conceptual Integrated Science
5.48 A flat (unbanked) curve on a highway has a radius of 170.0 m. A car rounds the curve at a speed of 25.0 m/...
University Physics with Modern Physics (14th Edition)
11. (Il) Particles of charge +65, +48, and -95 µC are placed in a line (Fig. 16—52 Q). The center one is 0.35 m...
Physics: Principles with Applications
Questions 25 through 27 concern a classic figure-skating jump called the axel. A skater starts the jump moving ...
College Physics: A Strategic Approach (4th Edition)
A constant 20-N force pushes a small ball in the direction of the force over a distance of 5.0 m. What is the w...
University Physics Volume 1
Choose the best answer to each of the following Explain your reasoning. 3.The modern organism that appeared to ...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Is it possible to rest a ladder against a rough wall when the floor is frictionless?arrow_forward(III) A door 2.30 m high and 1.30 m wide has a mass of 13.0 kg. A hinge 0.40 m from the top and another hinge 0.40 m from the bottom each support half the door's weight (Fig. 9–69). Assume that the center of gravity is at the geometrical center of the door, and determine 40 cm 2.30 m the horizontal and vertical force components exerted by each hinge on the door. -1.30 m- F40 cm FIGURE 9-69 Problem 29.arrow_forward(II) A 110-kg horizontal beam is supported at each end.A 320-kg piano rests a quarter of the way from one end.What is the vertical force on each of the supports?arrow_forward
- A uniform beam is hinged at one end and held in a hori- zontal position by a cable, as shown in Fig. 9–42. The tension in the cable (a) must be at least half the weight of the beam, no matter what the angle of the cable. (b) could be less than half the beam's weight for some angles. (c) will be half the beam's weight for all angles. (d) will equal the beam's weight for all angles. FIGURE 9–42 MisConceptual Question 3: beam and cable.arrow_forward(II) The Achilles tendon is attached to the rear of the foot as shown in Fig. 9–73. When a person elevates himself just barely off the floor on the “ball of one foot," estimate the tension Fr in the Achilles tendon (pulling upward), and the (downward) force Fg exerted by the lower leg bone on the foot. Assume the person has a mass of 72 kg and D is twice as long as d. - Leg bone Achilles tendon Ball of foot (pivot point) FB FIGURE 9–73 Problem 36.arrow_forward(II) A 172-cm-tall person lies on a light (massless) board which is supported by two scales, one under the top of her head and one beneath the bottom of her feet (Fig. 9–64). The two scales read, respectively, 35.1 and 31.6 kg. What distance is the center of gravity of this person from the bottom of her feet? 35.1 31.6 KILOGRAMS KILOGRAMS FIGURE 9-64 Problem 24.arrow_forward
- (II) The Leaning Tower of Pisa is 55 m tall and about 7.7 m in radius. The top is 4.5 m off center. Is the tower in stable equilibrium? If so, how much farther can it lean before it becomes unstable? Assume the tower is of uniform composition.arrow_forwardA ground retaining wall is shown in Fig. 9–36a. The ground, particularly when wet, can exert a significant force F on the wall. (a) What force produces the torque to keep the wall upright? (b) Explain why the retaining wall in Fig. 9–36b would be much less likely to overturn than that in Fig. 9–36a. -F (a) (b) FIGURE 9-36 Question 5.arrow_forward(ii) Ann and Mary are see-sawing on a playground. The uniform plank of the see-saw weighs 300 N and pivots at the centre. With a mass of 50.0 kg, Ann sits 0.300 m to the right from the pivot point. Calculate (A) the location that Mary should sit to balance the see-saw horizontally if she has a mass of 65.0 kg, and (B) the normal force exerted at the pivot point.arrow_forward
- (II) If a compressive force of 3.3x104 N is exerted on the end of a 22-cm-long bone of cross-sectional area 3.6 cm2 (a) will the bone break, and (b) if not, by how much does it shorten?arrow_forward(II) A traffic light hangs from a pole as shown in Fig. 9–59. The uniform aluminum pole AB is 7.20 m long and has a mass of 12.0 kg. The mass of the traffic light is 21.5 kg. Determine (a) the tension in the horizontal massless cable CD, and (b) the vertical and horizontal components of the force exerted by the pivot A on the aluminum pole. B C D 37 3.80 m FIGURE 9-59 Problem 19. Ho00arrow_forward(24) Assuming the lower arm has a mass of 2.8 kg and its CG is 12 cm from the elbow- joint pivot, how much force must the extensor muscle in the upper arm exert on the lower arm to hold a 7.5 kg shot put (Fig. 12-7)? 11) 2.5 cm F M A) 100 N 30.0 cm- Elbow joint B) 750 N C) 1500 N D) 500 N E) 1000 Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY