Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 23P
(II) Two wires run from the top of a pole 2.6 m tall that supports a volleyball net. The two wires are anchored to the ground 2.0 m apart, and each is 2.0 m from the pole (Fig. 12–62). The tension in each wire is 115 N. What is the tension in the net, assumed horizontal and attached at the top of the pole?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(III) A door 2.30 m high and 1.30 m wide has a mass of
13.0 kg. A hinge 0.40 m from the top and another hinge
0.40 m from the bottom each support half the door's weight
(Fig. 9–69). Assume that the center
of gravity is at the geometrical
center of the door, and determine
40 cm
2.30 m
the horizontal and vertical force
components exerted by each hinge
on the door.
-1.30 m-
F40 cm
FIGURE 9-69
Problem 29.
(II) Find the tension in the two cords shown in
Fig. 9-45. Neglect the mass
of the cords, and assume
9.
that the angle 6 is 33° and
the mass m is 170 kg.
FIGURE 9-45
Problem 11.
(II) Find the tension in the two cords shown in
Fig. 9-45. Neglect the mass
of the cords, and assume
9.
that the angle e is 33° and
the mass m is 170 kg.
FIGURE 9-45
Problem 11.
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
SCIENTIFIC INQUIRY DRAW IT As a consequence of size alone, larger organisms tend to have larger brains than sm...
Campbell Biology (11th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
39. A 60-cm-long heating wire is connected to a 120 V outlet. If the wire dissipates 45 W, what are (a) the cur...
College Physics: A Strategic Approach (3rd Edition)
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
Choose the best answer to each of the following. Explain your reasoning. What would you be most likely to find ...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (II) A 110-kg horizontal beam is supported at each end.A 320-kg piano rests a quarter of the way from one end.What is the vertical force on each of the supports?arrow_forward(II) A traffic light hangs from a pole as shown in Fig. 9–59. The uniform aluminum pole AB is 7.20 m long and has a mass of 12.0 kg. The mass of the traffic light is 21.5 kg. Determine (a) the tension in the horizontal massless cable CD, and (b) the vertical and horizontal components of the force exerted by the pivot A on the aluminum pole. B C D 37 3.80 m FIGURE 9-59 Problem 19. Ho00arrow_forward26. (III) Two wires run from the top of a pole 2.6 m tall that supports a volleyball net. The two wires are anchored to the ground 2.0 m apart, and each is 2.0 m from the pole (Fig. 9–66). The tension in each wire is 115 N. What is the tension in the net, assumed horizontal and attached at the top of the pole? \2.0 m -2.0 m FIGURE 9-66 Problem 26. 2.6 m 2.0 m-arrow_forward
- (III) A steel cable is to support an elevator whose total (loaded) mass is not to exceed 3100 kg. If the maximum acceleration of the elevator is 1.8 m/s2calculate the diameter of cable required. Assume a safety factor of 8.0.arrow_forwardThe uniform rod has a length l and weight W. It is supported at one end A by a smooth wall and the other end by a cord of length s which is attached to the wall as shown. Determine the placement h for equilibrium.arrow_forwardThe mobile in Fig. 12–74 is in equilibrium. Object B has mass of 0.748 kg. Ďetermine the masses of objects A, C, and D. (Neglect the weights of the crossbars.) 30.00 cm |7.50 cm 15.00 cm 5.00 cm A B 17.50 cm 5.00 cm Darrow_forward
- - 5. Two identical, uniform beams of length 3 m and weighing 260 N each are connected at one end by a frictionless hinge. A light horizontal crossbar, attached at the midpoints of the beams maintains an angle 50° between the beams. The beams are suspended from the ceiling by vertical wires so they form a V. See figure. (a) What force does the crossbar exert on each beam? (b) Is the crossbar under compression or tension, i.e. are the ends of the crossbar being pushed together or stretched farther apart? (c) What force (magnitude and direction) does the hinge exert on each beam? Crossbar Hingearrow_forward(II) The Achilles tendon is attached to the rear of the foot as shown in Fig. 9–73. When a person elevates himself just barely off the floor on the “ball of one foot," estimate the tension Fr in the Achilles tendon (pulling upward), and the (downward) force Fg exerted by the lower leg bone on the foot. Assume the person has a mass of 72 kg and D is twice as long as d. - Leg bone Achilles tendon Ball of foot (pivot point) FB FIGURE 9–73 Problem 36.arrow_forward(II) A 20.0-m-long uniform beam weighing 650 N rests on walls A and B, as shown in Fig. 9–62. (a) Find the maxi- mum weight of a person who can walk to the extreme end D without tipping the beam. Find the forces that the walls A and B exert on the beam when the person is stand- ing: (b) at D; (c) 2.0 m to the right of A. - 20.0 m- A В D +3.0 m→ -12.0 m - FIGURE 9-62 Problem 22.arrow_forward
- A uniform beam is hinged at one end and held in a hori- zontal position by a cable, as shown in Fig. 9–42. The tension in the cable (a) must be at least half the weight of the beam, no matter what the angle of the cable. (b) could be less than half the beam's weight for some angles. (c) will be half the beam's weight for all angles. (d) will equal the beam's weight for all angles. FIGURE 9–42 MisConceptual Question 3: beam and cable.arrow_forward(II) A 2500-kg trailer is attached to a stationary truck at point B, Fig. 9–61. Determine the normal force exerted by the road on the rear tires at A, and the vertical force exerted on the trailer by the support B. B Mg 2.5 m 5.5 m FIGURE 9-61 Problem 21.arrow_forward(II) How high must a pointed arch be if it is to span a space 8.0 m wide and exert one-third the horizontal force at its base that a round arch would?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY