Concept explainers
(II) A heavy load Mg = 66.0 kN hangs at point E of the single cantilever truss shown in Fig. 12–70. (a) Use a torque equation for the truss as a whole to determine the tension FT in the support cable, and then determine the force
FIGURE 12–70
Problem 49.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Human Physiology: An Integrated Approach (8th Edition)
Cosmic Perspective Fundamentals
Applications and Investigations in Earth Science (9th Edition)
Chemistry (7th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- (II) An iron bolt is used to connect two iron plates together. The bolt must withstand shear forces up to about 3300 N. Calculate the minimum diameter for the bolt, based on a safety factor of 7.0.arrow_forward(II) A uniform steel beam has a mass of 940 kg. On it is resting half of an identical beam, as shown in Fig. 9-60. What is the vertical support force at each end? •M •Marrow_forward(III) A door 2.30 m high and 1.30 m wide has a mass of 13.0 kg. A hinge 0.40 m from the top and another hinge 0.40 m from the bottom each support half the door's weight (Fig. 9–69). Assume that the center of gravity is at the geometrical center of the door, and determine 40 cm 2.30 m the horizontal and vertical force components exerted by each hinge on the door. -1.30 m- F40 cm FIGURE 9-69 Problem 29.arrow_forward
- Sir Lost-a-Lot dons his armor and sets out from the castle on his trusty steed (see figure below). Usually, the drawbridge is lowered to a horizontal position so that the end of the bridge rests on the stone ledge. Unfortunately, Lost-a-Lot's squire didn't lower the drawbridge far enough and stopped it at e = 20.0° above the horizontal. The knight and his horse stop when their combined center of mass is d = 1.25 m from the end of the bridge. The uniform bridge is { = 7.25 m long and has mass 2 500 kg. The lift cable is attached to the bridge 5.00 m from the hinge at the castle end and to a point on the castle wall h = 12.0 m above the bridge. Lost-a-Lot's mass combined with his armor and steed is 1 070 kg. While Lost-a-Lot ponders his next move, the enemy attacks! An incoming projectile breaks off the stone ledge so that the end of the drawbridge can be lowered past the wall where it usually rests. In addition, a fragment of the projectile bounces up and cuts the drawbridge cable! The…arrow_forward'A model for the elbow joint models the bicep muscle connecting to the horizontal forearm by a vertical tendon 4cm from the elbow joint. A mass m is held in the hand 30cm from the elbow joint. If the maximum tension that can be exerted by the tendon before injury occurs is 2250N, find the maximum mass that can be held in this way.' Im stuck on this questionarrow_forwardKPECTED HAS OCCU... Subject ystem S- rchpool.sona- ems.com man Subject Pool tem Department... 6³ 2 [108 W 24,919 Xx :8: F2 3 6. A 150 kg uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. Calculate the magnitude of the tension in the wire if the angle between the cable and the horizontal is 8 = 46°. X 1832.64 N E 20 F3 $ 4 R HEATRA MAL 2 7 F4 % 5 T F5 ^ 6 tv ♫ MacBook Air F6 Y & 7 44 F7 U M M | L T E 10 * 8 0 30.0⁰ DII F8 ( 9 Beam A DD F9 O O W F10 zoom B P C F11 ISUIH by mi 04 M vauies or roc puffer d + = F12 deletearrow_forward
- (I) A marble column of cross-sectional area 1.4 m2supports a mass of 25,000 kg. (a) What is the stress within the column?(b) What is the strain?arrow_forwardA uniform beam is hinged at one end and held in a hori- zontal position by a cable, as shown in Fig. 9–42. The tension in the cable (a) must be at least half the weight of the beam, no matter what the angle of the cable. (b) could be less than half the beam's weight for some angles. (c) will be half the beam's weight for all angles. (d) will equal the beam's weight for all angles. FIGURE 9–42 MisConceptual Question 3: beam and cable.arrow_forwardA uniform rod is attached to a wall by a hinge at its base. The rod has a mass of 7.5 kg, a length of 2.3 m, is at an angle of 29° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. 63.715 X Where is a convenient point about which to take the torques? See if you can write an expression for the torque in terms of the force producing the torque and the perpendicular distance from the line of action of the force to the point about which we have specified to determine the torque. See if you can write a second condition of equilibrium that will allow you to determine the tension in the cord. N (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. 36.788 X FH = Now that you know the tension in the cord from part (a), see if you can write a first condition of equilibrium statement that will allow you to…arrow_forward
- (II) If a compressive force of 3.3x104 N is exerted on the end of a 22-cm-long bone of cross-sectional area 3.6 cm2 (a) will the bone break, and (b) if not, by how much does it shorten?arrow_forwardA loaded cement mixer drivesonto an old drawbridge, where it stalls with its center of gravity threequartersof the way across the span. The truck driver radios for help,sets the handbrake, and waits. Meanwhile, a boat approaches, so thedrawbridge is raised by means of a cable attached to the end oppositethe hinge (Fig. ). The drawbridge is 40.0 m long and has a massof 18,000 kg; its center of gravity is at its midpoint. The cement mixer,with driver, has mass 30,000 kg. When the drawbridge has been raisedto an angle of 30° above the horizontal, the cable makes an angle of 70° with the surface of the bridge. (a) What is the tension T in the cablewhen the drawbridge is held in this position? (b) What are the horizontaland vertical components of the force the hinge exerts on the span?arrow_forwardA 10 kg ladder has a length of 8 feet and leans on a vertical wall with an angle of 30 degree. Determine the force exerted by the tip of the ladder on the vertical wall and the force exerted by its foot on the horizontal ground. ( complete solution)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning