Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 3Q
To determine
The reason why the method of finding the center of gravity of the meter stick using the fingers works.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You can find the center of gravity of a meter stick by resting it horizontally on your two index fingers, and then slowly drawing your fingers together. First the meter stick will slip on one finger, and then on the other, but eventually the fingers meet at the CG. Why does this work?
You can find the center of gravity of a long ruler by resting it horizontally on your two index fingers, and then slowly drawing your fingers together. First the ruler will slip on one finger, and then on the other, but eventually the fingers meet at the CG. Why does this work
A 35 N forearm (we are ignoring the hand for this problem) are held at a 45 deg angle to the vertically oriented humerus. The COM of the forearm is located at a distance of 15 cm from the joint center at the elbow,
and the elbow flexor muscles have a 3 cm moment arm. How much force must be exerted by the elbow flexor muscles to maintain this position?
Hide answer choices A
A 35 N
C
81.7 N
123.7 N
D 371 N
Fm
45°
*
--Wt₂
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the net torque on the wheel in Figure P10.23 about the axle through O, taking a = 10.0 cm and b = 25.0 cm. Figure P10.23arrow_forwardChildren playing pirates have suspended a uniform wooden plank with mass 15.0 kg and length 2.50 m as shown in Figure P14.27. What is the tension in each of the three ropes when Sophia, with a mass of 23.0 kg, is made to walk the plank and is 1.50 m from reaching the end of the plank? FIGURE P14.27arrow_forwardStand with your heels and back against a wall and try to bend over and touch your toes. You’ll find that you have to stand away from the wall to do so without toppling over. Compare the minimum distance of your heels from the wall with that of a friend of the opposite sex. Who can touch their toes with their heels nearer to the wall males or females? On the average and in proportion to height, which sex has the lower center of gravity?arrow_forward
- Many aspects of a gymnast's motion can be modeled by representing the gymnast by four segments consisting of arms, torso (including the head), thighs, and lower legs, as in Figure P8.85. Figure P8.85b shows arrows of lengths reg locat- ing the center of gravity of each segment. Use the data below and the coordinate system shown in Figure P8.85b to locate the center of gravity of the gymnast shown in Figure P8.85a. Masses for the arms, thighs, and legs include both appendages. Mass (kg) "eg (m) 0.239 Segment Length (m) 6.87 Arms 0.548 0.337 33.57 Torso 0.601 14.07 0.374 Thighs 0.151 0.227 7.54 Legs 0.350 Thigh O Arm Leg 60° 60° Torso Figure P8.85arrow_forwardA 50 N hand and forearm are held at a 35° angle to the vertically oriented humerus. The CG of the forearm and hand is located at a distance of 12.5 cm from the joint center at the elbow, and the elbow flexor muscles attach at an average distance of 2.5 cm from the joint center. (Assume that the muscles attach at an angle of 35° to the forearm bones.) How much force must be exerted by the forearm flexors to maintain this position?arrow_forwardA person who weighs 775 N supports himself on the ball of one foot. The normal force N = 775 N pushes up on the ball of the foot on one side of the ankle joint, while the Achilles tendon pulls up on the foot on the other side of the joint. The center of gravity of the person is located right above the tibia. What is the tension in the Achilles tendon? If the force acting is upward, enter a positive value and if the force acting is downward, enter a negative value.arrow_forward
- Two scales are separated by 2.00 m, and a plank of mass 4.00 kg is placed between them. Each scale is observed to read 2.00 kg. A person now lies on the plank, after which the right scale reads 30.0 kg and the left scale reads 50.0 kg. How far from the right scale is the person's center of gravity located?arrow_forwardA 50 N hand and forearm are held at a 35° angle to the vertically oriented humerus. The CG of the forearm and hand is located at a distance of 12.5 cm from the joint center at the elbow, and the elbow flexor muscles attach at an average distance of 2.5 cm from the joint center. (Assume that the muscles attach at an angle of 35° to the forearm bones.) How much force must the forearm flexors exert if a 50 N weight is held in the hand at a distance along the arm of 25 cm?arrow_forwardA uniform 1.0-N meter stick is suspended horizontally at the middle. A 2.0-N weight is suspended from the 10-cm position on the stick. Where should you place a 500 grams of mass in order to keep the meter-stick horizontal?arrow_forward
- A bowler holds a bowling ball with mass M = 6.7 kg in the palm of his hand. Lower arm has mass m = 1.6 kg. As the figure shows, his upper arm is vertical and his lower arm is horizontal.What is the magnitude of (a) the force of the biceps muscle on the lower arm and (b) the force between the bony structures at the elbow contact point? Biceps Elbow contact point 4.0 cm 18 cm- (a) Number (b) Number 32 cm- Lower arm (forearm plus hand) center of mass Units Unitsarrow_forwardA gravity board is a convenient and quick way to determine the location of the center of gravity of a person. It consists of a horizontal board supported by a fulcrum at one end and a scale at the other end. To demonstrate this in class, your physics professor calls on you to lie horizontally on the board with the top of your head directly above the fulcrum point as shown in the figure. The fulcrum is 2.00 m from the scale. In preparation for this experiment, you had accurately weighed yourself and determined your mass to be 65.0 kg. When you are at rest on the gravity board, the scale advances 300 N beyond its reading when the board is there by itself. Use this data to determine the location of your center of gravity relative to the top of your head. -2 m еВookarrow_forwardA man is holding a 2.80-kg ball, as shown in the figure. The distance from the elbow joint to the ball is d= 32.5 cm, and the distance from the elbow joint to the insertion of the triceps muscle is d= 2.50cm. The mass of the lower arm, including the hand, is 3.60 kg, and its center of gravity is at a distance d= 13.6cm from the elbow joint. a)Draw a free body diagram of the forearm. b)What is the magnitude of the force FM, exerted by the triceps? c)What is the force exerted by the humerus on the elbow joint?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning