In a mountain-climbing technique called the “Tyrolean traverse,” a rope is anchored on both ends (to rocks or strong trees) across a deep chasm, and then a climber traverses the rope while attached by a sling as in Fig. 12–102. This technique generates tremendous forces in the rope and anchors, so a basic understanding of physics is crucial for safety. A typical climbing rope can undergo a tension force of perhaps 29 kN before breaking, and a “safely factor” of 10 is usually recommended. The length of rope used in the Tyrolean traverse must allow for some “sag” to remain in the recommended safety range. Consider a 75-kg climber at the center of a Tyrolean traverse, spanning a 25-m chasm. ( a ) To be within its recommended safety range, what minimum distance x must the rope sag? ( b ) If the Tyrolean traverse is set up incorrectly so that the rope sags by only one-fourth the distance found in ( a ), determine the tension in the rope. Will the rope break? FIGURE 12–102 Problem 96.
In a mountain-climbing technique called the “Tyrolean traverse,” a rope is anchored on both ends (to rocks or strong trees) across a deep chasm, and then a climber traverses the rope while attached by a sling as in Fig. 12–102. This technique generates tremendous forces in the rope and anchors, so a basic understanding of physics is crucial for safety. A typical climbing rope can undergo a tension force of perhaps 29 kN before breaking, and a “safely factor” of 10 is usually recommended. The length of rope used in the Tyrolean traverse must allow for some “sag” to remain in the recommended safety range. Consider a 75-kg climber at the center of a Tyrolean traverse, spanning a 25-m chasm. ( a ) To be within its recommended safety range, what minimum distance x must the rope sag? ( b ) If the Tyrolean traverse is set up incorrectly so that the rope sags by only one-fourth the distance found in ( a ), determine the tension in the rope. Will the rope break? FIGURE 12–102 Problem 96.
In a mountain-climbing technique called the “Tyrolean traverse,” a rope is anchored on both ends (to rocks or strong trees) across a deep chasm, and then a climber traverses the rope while attached by a sling as in Fig. 12–102. This technique generates tremendous forces in the rope and anchors, so a basic understanding of physics is crucial for safety. A typical climbing rope can undergo a tension force of perhaps 29 kN before breaking, and a “safely factor” of 10 is usually recommended. The length of rope used in the Tyrolean traverse must allow for some “sag” to remain in the recommended safety range. Consider a 75-kg climber at the center of a Tyrolean traverse, spanning a 25-m chasm. (a) To be within its recommended safety range, what minimum distance x must the rope sag? (b) If the Tyrolean traverse is set up incorrectly so that the rope sags by only one-fourth the distance found in (a), determine the tension in the rope. Will the rope break?
A rectangular current loop (a = 15.0 cm, b = 34.0 cm) is located a distance d = 10.0 cm near a long, straight wire that
carries a current (Iw) of 17.0 A (see the drawing). The current in the loop is IL = 21.0 A. Determine the magnitude of
the net magnetic force that acts on the loop.
Solve in N.
a
b
IL
Iw
Two long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A
in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm,
r2 = 7.00 cm, and r3 = 13.0 cm.
Solve in T.
12
d
A
√3
I tried to solve this question, and I had an "expert" answer it and they got it wrong. I cannot answer this question
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.