Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 59GP
What minimum horizontal force F is needed to pull a wheel of radius R and mass M over a step of height h as shown in Fig. 12–75 (R > h)? (a) Assume the force is applied at the top edge as shown. (b) Assume the force is applied instead at the wheel’s center.
FIGURE 12–75 Problem 59.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ground retaining wall is shown in Fig. 9–36a. The ground,
particularly when wet, can exert a significant force F on the
wall. (a) What force produces the torque to keep the wall
upright? (b) Explain why the retaining wall in Fig. 9–36b
would be much less likely to overturn than that in Fig. 9–36a.
-F
(a)
(b)
FIGURE 9-36 Question 5.
A bicycle wheel is at rest against a curb. if the wheel has a radius R, and a mass M and is at rest against a curb of height h=.14R, determine the minimum horizontal force in terms of M and g that must be applied to the axle to make the wheel start to rise up over the step
(I) A tower crane (Fig. 9–48a) must always be carefully
balanced so that there is no net torque tending to tip it.
A particular crane at a building site is about to lift a
2800-kg air-conditioning unit. The crane's dimensions are
shown in Fig. 9-48b. (a) Where must the crane's 9500-kg
counterweight be placed when the load is lifted from the
ground? (The counterweight is usually moved auto-
matically via sensors and motors to precisely compensate
for the load.) (b) Determine the maximum load that can be
lifted with this counterweight when it is placed at its full
extent. Ignore the mass of the beam.
(a)
Counterweight
M = 9500 kg
+3.4 m-
7.7 m
m = 2800 kg
FIGURE 9-48
(b)
Problem 3.
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Give a molecular orbital description for each of the following: a. 1,3-pentadiene b. 1,4-pentadiene c. 1,3,5-he...
Organic Chemistry (8th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
A mixed culture of Escherichia coli and Penicillium chrysogenum is inoculated onto the following culture media....
Microbiology: An Introduction
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
51. I A tennis player hits a ball 2.0 m above the ground. The ball leaves his racquet with a speed of 20.0 m/s ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Which coastal area experiences the largest tidal range difference in height between the high tide and low tide?...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 10-75. The two shafts are made of A36 steel. Each has a diameter of 25 mm and they are connected using the gears fixed to their endk Their other ends are attached to fixed supports at A and B. They are also supported by journal bearings at Cand D, which alkow free rotation of the shafts along their axes. If a torque of S00 N-m is applied to the gear at E, determine the rotation of this gear. S0 mm 0.75 100 mm- S00N-marrow_forwardA uniform rod is attached to a wall by a hinge at its base. The rod has a mass of 7.5 kg, a length of 2.3 m, is at an angle of 29° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. 63.715 X Where is a convenient point about which to take the torques? See if you can write an expression for the torque in terms of the force producing the torque and the perpendicular distance from the line of action of the force to the point about which we have specified to determine the torque. See if you can write a second condition of equilibrium that will allow you to determine the tension in the cord. N (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. 36.788 X FH = Now that you know the tension in the cord from part (a), see if you can write a first condition of equilibrium statement that will allow you to…arrow_forwardA 50-story building is being planned. It is to be 180.0 m high with a base 46.0 m by 76.0 m. Its total mass will be about 1.8 x 107 kg, and its weight therefore about 1.8 x 10° N. Suppose a 200-km/h wind exerts a force of 950 N/m² over the 76.0-m-wide face (Fig. 9–80). Calculate the torque about the potential pivot point, the rear edge_ of the building (where Fp acts in Fig. 9–80), and determine whether the building will topple. Assume the total force of the wind acts at I口 the midpoint of the build- ing's face, and that the building is not anchored in bedrock. [Hint: Fe in Fig. 9-80 represents the force that the Earth would ... mg exert on the building in the case where the building would just begin to tip.] FIGURE 9-80 Forces on a building subjected to wind (FA), gravity (mg), and the force FE on the building due to the Earth if the building were just about to tip. Problem 61.arrow_forward
- (II) A person exerts a horizontal force of 42 N on the end of a door 96 cm wide. What is the magnitude of the torque if the force is exerted (a) perpendicular to the door and (b) at a 60.0° angle to the face of the door?arrow_forward(b) A heavy uniform rod AB of weight W is hinged at A to a fixed point. It is pulled aside by a horizontal force P so that it rests inclined at an angle 0 to the vertical. Show that (i) the magnitude of the force Pis 1-cos2e W 2V 1-sin24 (ii) the reaction at the hinge is V3+ sec*0arrow_forward10) A uniform 255 N rod that is 2 m long carries a 225 N weight at its right end and an unknown weight W 0.5 m from the left end. The system is balanced horizontally when the fulcrum is located 0.75 m from the right end. What is W and the normal force from the fulcrum?arrow_forward
- 17-106. The truck carries the spool which has a weight of 500 Ib and a radius of gyration of kg = 2 ft. Determine the angular acceleration of the spool if it is not tied down on the truck and the truck begins to accelerate at 3 ft/s². Assume the spool does not slip on the bed of the truck.arrow_forwardA uniform sphere of weight 50 N and radius 4 cm is held by a string of length 8 cm, against a smooth wall inclined at an angle of 70 degrees, Find the tension in the string, and the force between the ball and the wallarrow_forwardA wheelbarrow with w weight of 150N is used to lift a load with a weight of 900 N. The length from the wheel axle to the center of gravity (COG) of the load is 2 ft, and the distance to the (COG) of the wheelbarrow is 1.5 ft. The length from the wheel axle to the hands is 5 ft. The wheelbarrow is also tilted at an angle of 30 degrees with respect to the horizontal. Calculate the motive force required to hold the wheel barrowarrow_forward
- H:21)arrow_forwardQuestion 23 of 32 The bones of the forearm (radius and ulna) are hinged to the humerus at the elbow. The biceps muscle connects to the bones of the forearm about 2.15 cm beyond the joint. Biceps muscle Assume the forearm has a mass of 2.15 kg and a length of 0.405 m. When the humerus and the biceps are nearly vertical and the forearm is horizontal, if a person wishes to Humerus- hold an object of mass 4.95 kg so that her forearm remains motionless, what is the force exerted by the biceps muscle? Radius M Elbow- Ulna force: Hand about us privacy policy terms of use contact us help careers tv W MacBook Air 8628-1arrow_forwardYou are trying to raise a bicycle wheel of mass m and radius R up over a curb of height h. To do this, you apply a horizontal force F S . What is the smallest magnitude of the force F S that will succeed in raising the wheel onto the curb when the force is applied (a) at the center of the wheel and (b) at the top of the wheel? (c) In which case is less force required?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY