A 50-story building is being planned. It is to be 180.0 m high with a base 46.0 m by 76.0 m. Its total mass will be about 1.8 x 107 kg, and its weight therefore about 1.8 x 10° N. Suppose a 200-km/h wind exerts a force of 950 N/m² over the 76.0-m-wide face (Fig. 9–80). Calculate the torque about the potential pivot point, the rear edge_ of the building (where Fp acts in Fig. 9–80), and determine whether the building will topple. Assume the total force of the wind acts at I口 the midpoint of the build- ing's face, and that the building is not anchored in bedrock. [Hint: Fe in Fig. 9-80 represents the force that the Earth would ... mg exert on the building in the case where the building would just begin to tip.] FIGURE 9-80 Forces on a building subjected to wind (FA), gravity (mg), and the force FE on the building due to the Earth if the building were just about to tip. Problem 61.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
A 50-story building is being planned. It is to be 180.0 m high
with a base 46.0 m by 76.0 m. Its total mass will be about
1.8 x 107 kg, and its weight therefore about 1.8 x 10° N.
Suppose a 200-km/h wind exerts a force of 950 N/m² over
the 76.0-m-wide face (Fig. 9–80). Calculate the torque about
the potential pivot point,
the rear edge_ of the
building (where Fp acts in
Fig. 9–80), and determine
whether the building will
topple. Assume the total
force of the wind acts at
I口
the midpoint of the build-
ing's face, and that the
building is not anchored
in bedrock. [Hint: Fe in
Fig. 9-80 represents the
force that the Earth would
...
mg
exert on the building in
the case where the building
would just begin to tip.]
FIGURE 9-80 Forces on a building subjected
to wind (FA), gravity (mg), and the force FE
on the building due to the Earth if the
building were just about to tip. Problem 61.
Transcribed Image Text:A 50-story building is being planned. It is to be 180.0 m high with a base 46.0 m by 76.0 m. Its total mass will be about 1.8 x 107 kg, and its weight therefore about 1.8 x 10° N. Suppose a 200-km/h wind exerts a force of 950 N/m² over the 76.0-m-wide face (Fig. 9–80). Calculate the torque about the potential pivot point, the rear edge_ of the building (where Fp acts in Fig. 9–80), and determine whether the building will topple. Assume the total force of the wind acts at I口 the midpoint of the build- ing's face, and that the building is not anchored in bedrock. [Hint: Fe in Fig. 9-80 represents the force that the Earth would ... mg exert on the building in the case where the building would just begin to tip.] FIGURE 9-80 Forces on a building subjected to wind (FA), gravity (mg), and the force FE on the building due to the Earth if the building were just about to tip. Problem 61.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON