Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 10Q
(a)
To determine
The way in which the cone has to be laid on the flat table to be it in stable equilibrium.
(b)
To determine
The way in which the cone has to be laid on the flat table to be it in unstable equilibrium.
(c)
To determine
The way in which the cone has to be laid on the flat table to be it in neutral equilibrium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A ground retaining wall is shown in Fig. 9–36a. The ground,
particularly when wet, can exert a significant force F on the
wall. (a) What force produces the torque to keep the wall
upright? (b) Explain why the retaining wall in Fig. 9–36b
would be much less likely to overturn than that in Fig. 9–36a.
-F
(a)
(b)
FIGURE 9-36 Question 5.
A 60-kg woman stands on the very end of a uniform board,
of length (, which is supported one-quarter of the way
from one end and is balanced (Fig. 9–41). What is the mas
of the board?
(a) 15 kg. (b) 20 kg. (c) 30 kg. (d) 60 kg. (e) 120 kg.
FIGURE 9-41
MisConceptual
Question 1.
1/4
(I) A tower crane (Fig. 9–48a) must always be carefully
balanced so that there is no net torque tending to tip it.
A particular crane at a building site is about to lift a
2800-kg air-conditioning unit. The crane's dimensions are
shown in Fig. 9-48b. (a) Where must the crane's 9500-kg
counterweight be placed when the load is lifted from the
ground? (The counterweight is usually moved auto-
matically via sensors and motors to precisely compensate
for the load.) (b) Determine the maximum load that can be
lifted with this counterweight when it is placed at its full
extent. Ignore the mass of the beam.
(a)
Counterweight
M = 9500 kg
+3.4 m-
7.7 m
m = 2800 kg
FIGURE 9-48
(b)
Problem 3.
Chapter 12 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 12.1 - For simplicity, we wrote the equation in Example...Ch. 12.2 - We did not need to use the force equation to solve...Ch. 12.2 - CHAPTER-OPENING QUESTIONGuess Now! The diving...Ch. 12.2 - Why is it reasonable to ignore friction along the...Ch. 12.4 - Two steel wires have the same length and are under...Ch. 12 - Describe several situations in which an object is...Ch. 12 - A bungee jumper momentarily comes to rest at the...Ch. 12 - Prob. 3QCh. 12 - Your doctors scale has arms on which weights slide...Ch. 12 - A ground retaining wall is shown in Fig. 1240a....
Ch. 12 - Can the sum of the torques on an object be zero...Ch. 12 - A ladder, leaning against a wall, makes a 60 angle...Ch. 12 - A uniform meter stick supported at the 25-cm mark...Ch. 12 - Prob. 9QCh. 12 - Prob. 10QCh. 12 - Place yourself facing the edge of an open door....Ch. 12 - Prob. 12QCh. 12 - Prob. 13QCh. 12 - Which of the configurations of brick, (a) or (b)...Ch. 12 - Name the type of equilibrium for each position of...Ch. 12 - Is the Youngs modulus for a bungee cord smaller or...Ch. 12 - Examine how a pair of scissors or shears cuts...Ch. 12 - Materials such as ordinary concrete and stone are...Ch. 12 - (I) Three forces are applied to a tree sapling, as...Ch. 12 - (I) Approximately what magnitude force, FM, must...Ch. 12 - Prob. 3PCh. 12 - (I) A tower crane (Fig. 1248a) must always be...Ch. 12 - (II) Calculate the forces FA and FB that the...Ch. 12 - Prob. 6PCh. 12 - (II) The two trees in Fig. 1250 are 6.6 m apart. A...Ch. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - Prob. 10PCh. 12 - (II) Find the tension in the two cords shown in...Ch. 12 - (II) Find the tension in the two wires supporting...Ch. 12 - Prob. 13PCh. 12 - (II) The force required to pull the cork out of...Ch. 12 - (II) Calculate and FA and FB for the beam shown in...Ch. 12 - Prob. 16PCh. 12 - Prob. 17PCh. 12 - (II) Three children are trying to balance on a...Ch. 12 - (II) The Achilles tendon is attached to the rear...Ch. 12 - (II) A shop sign weighing 215 N is supported by a...Ch. 12 - (II) A traffic light hangs from a pole as shown in...Ch. 12 - (II) A uniform steel beam has a mass of 940 kg. On...Ch. 12 - (II) Two wires run from the top of a pole 2.6 m...Ch. 12 - (II) A large 62.0-kg board is propped at a 45...Ch. 12 - (II) Repeat Problem 24 assuming the coefficient of...Ch. 12 - (II) A 0.75-kg sheet hangs from a massless...Ch. 12 - (II) A uniform rod AB of length 5.0 m and mass M =...Ch. 12 - (III) A 56.0-kg person stands 2.0 m from the...Ch. 12 - (III) A door 2.30 m high and 1.30 m wide has a...Ch. 12 - (III) A cubic crate of side s = 2.0 m is...Ch. 12 - (III) A refrigerator is approximately a uniform...Ch. 12 - (III) A uniform ladder of mass m and length leans...Ch. 12 - Prob. 33PCh. 12 - (I) A nylon string on a tennis racket is under a...Ch. 12 - (I) A marble column of cross-sectional area 1.4 m2...Ch. 12 - (I) By how much is the column in Problem 35...Ch. 12 - (I) A sign (mass 1700 kg) hangs from the end of a...Ch. 12 - (II) How much pressure is needed to compress the...Ch. 12 - Prob. 39PCh. 12 - (II) At depths of 2000 m in the sea, the pressure...Ch. 12 - (III) A pole projects horizontally from the front...Ch. 12 - (I) The femur bone in the human leg has a minimum...Ch. 12 - (II) (a) What is the maximum tension possible in a...Ch. 12 - (II) If a compressive force of 3.3 104 N is...Ch. 12 - (II) (a) What is the minimum cross-sectional area...Ch. 12 - (II) Assume the supports of the uniform cantilever...Ch. 12 - (II) An iron bolt is used to connect two iron...Ch. 12 - (II) A steel cable is to support an elevator whose...Ch. 12 - (II) A heavy load Mg = 66.0 kN hangs at point E of...Ch. 12 - (II) Figure 1271 shows a simple truss that carries...Ch. 12 - (II) (a) What minimum cross-sectional area must...Ch. 12 - (II) onsider again Example 1211 but this time...Ch. 12 - (III) The truss shown in Fig. 1272 supports a...Ch. 12 - (III) Suppose in Example 1211, a 23-ton truck (m =...Ch. 12 - (III) For the Pratt truss shown in Fig. 1273,...Ch. 12 - (II) How high must a pointed arch be if it is to...Ch. 12 - The mobile in Fig. 1274 is in equilibrium. Object...Ch. 12 - A tightly stretched high wire is 36 m long. It...Ch. 12 - What minimum horizontal force F is needed to pull...Ch. 12 - A 28-kg round table is supported by three legs...Ch. 12 - When a wood shelf of mass 6.6 kg is fastened...Ch. 12 - Prob. 62GPCh. 12 - The center of gravity of a loaded truck depends on...Ch. 12 - In Fig. 1279, consider the right-hand...Ch. 12 - Assume that a single-span suspension bridge such...Ch. 12 - When a mass of 25 kg is hung from the middle of a...Ch. 12 - The forces acting on a 77,000-kg aircraft flying...Ch. 12 - A uniform flexible steel cable of weight mg is...Ch. 12 - A 20.0-m-long uniform beam weighing 650 N rests on...Ch. 12 - A cube of side l rests on a rough floor. It is...Ch. 12 - A 65.0-kg painter is on a uniform 25-kg scaffold...Ch. 12 - A man doing push-ups pauses in the position shown...Ch. 12 - A 23-kg sphere rests between two smooth planes as...Ch. 12 - A 15.0-kg ball is supported from the ceiling by...Ch. 12 - Parachutists whose chutes have failed to open have...Ch. 12 - A steel wire 2.3 mm in diameter stretches by...Ch. 12 - A 2500-kg trailer is attached to a stationary...Ch. 12 - Prob. 78GPCh. 12 - A 25-kg object is being lifted by pulling on the...Ch. 12 - A uniform 6.0-m-long ladder of mass 16.0 kg leans...Ch. 12 - There is a maximum height of a uniform vertical...Ch. 12 - A 95,000-kg train locomotive starts across a...Ch. 12 - A 23.0-kg backpack is suspended midway between two...Ch. 12 - A uniform beam of mass M and length l is mounted...Ch. 12 - Two identical, uniform beams are symmetrically set...Ch. 12 - If 35 kg is the maximum mass m that a person can...Ch. 12 - (a) Estimate the magnitude of the force FM the...Ch. 12 - One rod of the square frame shown in Fig. 1295...Ch. 12 - A steel rod of radius R = 15 cm and length 0,...Ch. 12 - A home mechanic wants to raise the 280-kg engine...Ch. 12 - A 2.0-m-high box with a 1.0-m-squarc base is moved...Ch. 12 - You are on a pirate ship and being forced to walk...Ch. 12 - A uniform sphere of weight mg and radius r0 is...Ch. 12 - Use the method of joints to determine the force in...Ch. 12 - A uniform ladder of mass m and length leans at an...Ch. 12 - In a mountain-climbing technique called the...Ch. 12 - (III) A metal cylinder has an original diameter of...Ch. 12 - (III) Two springs, attached by a rope, are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform meter stick supported at the 25-cm mark is in equilibrium when a 1-kg rock is suspended at the 0-cm end (as shown in Fig. 9–37). Is the mass of the meter stick greater than, equal to, or less than the mass of the rock? Explain your reasoning. FIGURE 9-37 Question 8.arrow_forwardWhich configuration of bricks, Fig. 9–39a or Fig. 9–39b, is the more likely to be stable? Why? (a) (b) FIGURE 9-39 Question 15. The dots indicate the CG of each brick (assumed uniform). The fractions and } indicate what portion of each brick is hanging beyond its support.arrow_forwardA 25-ft chain with a weight of 30 lb is suspended between two points at the same elevation. Knowing that the sag is 10 ft, determine (a) the distance between the supports, (b) the maximum tension in the chain.arrow_forward
- 10) One end of a uniform beam is hinged to a wall and the other end is supported by a tension wire that makes angles 0 = 25° with both the wall and the beam as shown in the figure below. The beam is 1 m long and weighs 222 N with its center of mass located at the half of its total length. Find (a) the tensile force in the wire, (b) the horizontal component of the force of the hinge on the beam, and (c) the vertical component of the force of the hinge on the beam. Hingearrow_forward(11) A tapered log 3.0 m long weighs 210 N and has its center of gravity 1.0 m from the thick end. It is being used as a bridge across a ditch and is supported at its ends by the edges of the ditch. A 600 N man stands on the log 1.0 m from the thin end. How much support is required at each end of the log? 3m FN=mant eug+ 1.omarrow_forwardA 30 kN horizontal force and 40 kN vertical force is directed 53 degrees wrt x axis to the upper right, at what angle (in degrees) will forces of the same magnitude be directed to the lower left to produce equilibrium?arrow_forward
- (II) A uniform steel beam has a mass of 940 kg. On it is resting half of an identical beam, as shown in Fig. 9-60. What is the vertical support force at each end? •M •Marrow_forward(I) Suppose the point of insertion of the biceps muscle intothe lower arm shown in Fig. 9–13a (Example 9–8) is 6.0 cminstead of 5.0 cm; how much mass could the person holdwith a muscle exertion of 450 N?arrow_forward6arrow_forward
- 20) A uniform wood beam (Wwood = 2,000 N and L=6 meter) has a load of bricks (Wbricks = 5,000 N) placed on the beam raricks 4 meters from the end, Bob (Waob = 1,000 N) is standing on the wood beam raob Im from the end. At what positions (d) measured from the far-left end of the board would the triangle be placed so that the system is balanced? Tricksarrow_forward(II) The subterranean tension ring that exerts the balancing horizontal force on the abutments for the dome in Fig. 9–34 is 36-sided, so each segment makes a 10° angle with the adjacent one (Fig. 9–77). Calculate the tension F that must exist in each segment so that the required force of 4.2 x 105 N can be exerted at each corner (Example 9–13). -F 5° 5° FIGURE 9-77 420,000 N Problem 58. Buttressarrow_forwardTwo identical, uniform beams are symmetrically set up against each other (Fig. 9–87) on a floor with which they have a coefficient of fric- tion µs = 0.50. What is the minimum angle the beams can make with the floor and still not fall? FIGURE 9-87 Problem 71.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College