Sir Lost-a-Lot dons his armor and sets out from the castle on his trusty steed (see figure below). Usually, the drawbridge is lowered to a horizontal position so that the end of the bridge rests on the stone ledge. Unfortunately, Lost-a-Lot's squire didn't lower the drawbridge far enough and stopped it at e = 20.0° above the horizontal. The knight and his horse stop when their combined center of mass is d = 1.25 m from the end of the bridge. The uniform bridge is e = 7.25 m long and has mass 2 500 kg. The lift cable is attached to the bridge 5.00 m from the hinge at the castle end and to a point on the castle wall h = 12.0 m above the bridge. Lost-a-Lot's mass combined with his armor and steed is 1 070 kg. While Lost-a-Lot ponders his next move, the enemy attacks! An incoming projectile breaks off the stone ledge so that the end of the drawbridge can be lowered past the wall where it usually rests. In addition, a fragment of the projectile bounces up and cuts the drawbridge cable! The hinge between the castle wall and the bridge is frictionless, and the bridge swings down freely until it is vertical and smacks into the vertical castle wall below the castle entrance.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Sir Lost-a-Lot dons his armor and sets out from the castle on his trusty steed (see figure below). Usually, the drawbridge is lowered to a horizontal position so
that the end of the bridge rests on the stone ledge. Unfortunately, Lost-a-Lot's squire didn't lower the drawbridge far enough and stopped it at e = 20.0° above
the horizontal. The knight and his horse stop when their combined center of mass is d = 1.25 m from the end of the bridge. The uniform bridge is { = 7.25 m
long and has mass 2 500 kg. The lift cable is attached to the bridge 5.00 m from the hinge at the castle end and to a point on the castle wall h = 12.0 m above
the bridge. Lost-a-Lot's mass combined with his armor and steed is 1 070 kg. While Lost-a-Lot ponders his next move, the enemy attacks! An incoming projectile
breaks off the stone ledge so that the end of the drawbridge can be lowered past the wall where it usually rests. In addition, a fragment of the projectile bounces
up and cuts the drawbridge cable! The hinge between the castle wall and the bridge is frictionless, and the bridge swings down freely until it is vertical and
smacks into the vertical castle wall below the castle entrance.
Transcribed Image Text:Sir Lost-a-Lot dons his armor and sets out from the castle on his trusty steed (see figure below). Usually, the drawbridge is lowered to a horizontal position so that the end of the bridge rests on the stone ledge. Unfortunately, Lost-a-Lot's squire didn't lower the drawbridge far enough and stopped it at e = 20.0° above the horizontal. The knight and his horse stop when their combined center of mass is d = 1.25 m from the end of the bridge. The uniform bridge is { = 7.25 m long and has mass 2 500 kg. The lift cable is attached to the bridge 5.00 m from the hinge at the castle end and to a point on the castle wall h = 12.0 m above the bridge. Lost-a-Lot's mass combined with his armor and steed is 1 070 kg. While Lost-a-Lot ponders his next move, the enemy attacks! An incoming projectile breaks off the stone ledge so that the end of the drawbridge can be lowered past the wall where it usually rests. In addition, a fragment of the projectile bounces up and cuts the drawbridge cable! The hinge between the castle wall and the bridge is frictionless, and the bridge swings down freely until it is vertical and smacks into the vertical castle wall below the castle entrance.
(d) Find the force exerted by the hinge on the bridge immediately after the cable breaks.
horizontal component: magnitude
kN
direction
--Select--
vertical component: magnitude
KN
direction
Select-
(e) Find the force exerted by the hinge on the bridge immediately before it strikes the castle wall.
horizontal component: magnitude
kN
direction
--Select--
vertical component:
magnitude
KN
direction
Select-
Transcribed Image Text:(d) Find the force exerted by the hinge on the bridge immediately after the cable breaks. horizontal component: magnitude kN direction --Select-- vertical component: magnitude KN direction Select- (e) Find the force exerted by the hinge on the bridge immediately before it strikes the castle wall. horizontal component: magnitude kN direction --Select-- vertical component: magnitude KN direction Select-
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Center of mass of a system
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON