EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 9780100552234
Author: ZUMDAHL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 3ALQ
For the reaction
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5. A solution of sucrose is fermented in a vessel until the evolution of CO2 ceases. Then, the
product solution is analyzed and found to contain, 45% ethanol; 5% acetic acid; and 15%
glycerin by weight.
If the original charge is 500 kg, evaluate;
e. The ratio of sucrose to water in the original charge (wt/wt).
f. Moles of CO2 evolved.
g. Maximum possible amount of ethanol that could be formed.
h. Conversion efficiency.
i. Per cent excess of excess reactant.
Reactions:
Inversion reaction: C12H22O11 + H2O →2C6H12O6
Fermentation reaction: C6H12O6 →→2C2H5OH + 2CO2
Formation of acetic acid and glycerin: C6H12O6 + C2H5OH + H₂O→ CH3COOH + 2C3H8O3
Show work. don't give Ai generated solution. How many carbons and hydrogens are in the structure?
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
2°C. +2°C. cleavage
Bond A
•CH3 + 26.← Cleavage
2°C. +
Bond C
+3°C•
CH3 2C
Cleavage
E
2°C. 26.
weakest bond
Intact molecule
Strongest 3°C 20.
Gund
Largest
argest
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
C
Weakest
bond
A
Produces
Most
Bond
Strongest
Bond
Strongest Gund
produces least stable
radicals
Weakest
Stable radical
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
13°C. formed in
bound C
cleavage
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
• CH3
methyl radical
Formed in Gund A Cleavage
c.…
Chapter 12 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
Ch. 12 - Characterize a system at chemical equilibrium with...Ch. 12 - What is the law of mass action? Is it true that...Ch. 12 - Prob. 3RQCh. 12 - Prob. 4RQCh. 12 - Prob. 5RQCh. 12 - Distinguish between the terms equilibrium constant...Ch. 12 - Summarize the steps for solving equilibrium...Ch. 12 - Prob. 8RQCh. 12 - What is Le Chteliers principle? Consider the...Ch. 12 - Prob. 10RQ
Ch. 12 - Consider an equilibrium mixture of four chemicals...Ch. 12 - The boxes shown below represent a set of initial...Ch. 12 - For the reactionH2(g)+I2(g)2HI(g), consider two...Ch. 12 - Prob. 4ALQCh. 12 - Consider the reaction A(g)+2B(g)C(g)+D(g) in a...Ch. 12 - Consider the reactionA(g)+B(g)C(g)+D(g). A friend...Ch. 12 - Prob. 7ALQCh. 12 - Prob. 8ALQCh. 12 - Prob. 9ALQCh. 12 - Prob. 10QCh. 12 - Consider the following reaction:...Ch. 12 - Prob. 12QCh. 12 - Suppose a reaction has the equilibrium constant K...Ch. 12 - Prob. 14QCh. 12 - Consider the following reaction at some...Ch. 12 - Prob. 16QCh. 12 - Prob. 17QCh. 12 - Prob. 18QCh. 12 - For a typical equilibrium problem, the value of K...Ch. 12 - Prob. 20QCh. 12 - Write the equilibrium expression (K) for each of...Ch. 12 - Write the equilibrium expression (Kp) for each...Ch. 12 - Prob. 23ECh. 12 - For the reaction H2(g)+Br2(g)2HBr(g) Kp = 3.5 104...Ch. 12 - Prob. 25ECh. 12 - At high temperatures, elemental nitrogen and...Ch. 12 - At a particular temperature, a 3.0-L flask...Ch. 12 - At a particular temperature a 2.00-L flask at...Ch. 12 - Prob. 29ECh. 12 - Prob. 30ECh. 12 - Prob. 31ECh. 12 - Prob. 32ECh. 12 - Prob. 33ECh. 12 - Write expressions for Kp for the following...Ch. 12 - Prob. 35ECh. 12 - Prob. 36ECh. 12 - Prob. 37ECh. 12 - In a study of the reaction...Ch. 12 - The equilibrium constant is 0.0900 at 25C for the...Ch. 12 - The equilibrium constant is 0.0900 at 25C for the...Ch. 12 - At 900c, Kp = 1.04 for the reaction...Ch. 12 - Ethyl acetate is synthesized in a nonreacting...Ch. 12 - For the reaction 2H2O(g)2H2(g)+O2(g) K = 2.4 103...Ch. 12 - The reaction 2NO(g)+Br2(g)2NOBr(g) has Kp = 109 at...Ch. 12 - A 1.00-L flask was filled with 2.00 moles of...Ch. 12 - Prob. 46ECh. 12 - Prob. 47ECh. 12 - Prob. 48ECh. 12 - Prob. 49ECh. 12 - Nitrogen gas (N2) reacts with hydrogen gas (H2) to...Ch. 12 - Prob. 51ECh. 12 - Prob. 52ECh. 12 - Prob. 53ECh. 12 - At 25c, K = 0.090 for the reaction...Ch. 12 - Prob. 55ECh. 12 - Prob. 56ECh. 12 - Prob. 57ECh. 12 - At o particular temperature, K = 4 .0 107 for the...Ch. 12 - Prob. 59ECh. 12 - Lexan is a plastic used to make compact discs,...Ch. 12 - At 25C, Kp. = 2.9 103 for the reaction...Ch. 12 - A sample of solid ammonium chloride was placed in...Ch. 12 - Prob. 63ECh. 12 - Predict the shift in the equilibrium position that...Ch. 12 - An important reaction in the commercial production...Ch. 12 - What will happen to the number of moles of SO3 in...Ch. 12 - Prob. 67ECh. 12 - Hydrogen for use in ammonia production is produced...Ch. 12 - Old-fashioned smelling salts consist of ammonium...Ch. 12 - Ammonia is produced by the Haber process, in which...Ch. 12 - Prob. 71AECh. 12 - Given the following equilibrium constants at...Ch. 12 - Consider the decomposition of the compound C5H6O3...Ch. 12 - Prob. 74AECh. 12 - The gas arsine, AsH3, decomposes as follows:...Ch. 12 - At a certain temperature, K = 9.1 10-4 for the...Ch. 12 - At a certain temperature, K = 1.1 l03 for the...Ch. 12 - Prob. 78AECh. 12 - At 25C, gaseous SO2Cl2 decomposes to SO2(g) and...Ch. 12 - For the following reaction at a certain...Ch. 12 - Prob. 81AECh. 12 - Consider the reaction Fe3+(aq)+SCN(aq)FeSCN2+(aq)...Ch. 12 - Chromium(VI) forms two different oxyanions, the...Ch. 12 - Prob. 84AECh. 12 - Prob. 85AECh. 12 - For the reaction below, Kp = 1.16 at 800C....Ch. 12 - Many sugars undergo a process called mutarotation,...Ch. 12 - Peptide decomposition is one of the key processes...Ch. 12 - The creation of shells by mollusk species is a...Ch. 12 - Methanol, a common laboratory solvent, poses a...Ch. 12 - Prob. 91CWPCh. 12 - Prob. 92CWPCh. 12 - Prob. 93CWPCh. 12 - Prob. 94CWPCh. 12 - Prob. 95CWPCh. 12 - Prob. 96CWPCh. 12 - Consider the following exothermic reaction at...Ch. 12 - For the following endothermic reaction at...Ch. 12 - Prob. 99CPCh. 12 - A 4.72-g sample of methanol (CH3OH) was placed in...Ch. 12 - At 35C, K = 1.6 105 for the reaction...Ch. 12 - Nitric oxide and bromine at initial partial...Ch. 12 - At 25C. Kp = 5.3 105 for the reaction...Ch. 12 - Prob. 104CPCh. 12 - The partial pressures of an equilibrium mixture of...Ch. 12 - At 125C, KP = 0.25 for the reaction...Ch. 12 - A mixture of N2, H2, and NH3 is at equilibrium...Ch. 12 - Prob. 108CPCh. 12 - Prob. 109CPCh. 12 - Prob. 110CPCh. 12 - Prob. 111CPCh. 12 - A sample of N2O4(g) is placed in an empty cylinder...Ch. 12 - A sample of gaseous nitrosyl bromide (NOBr) was...Ch. 12 - Prob. 114CPCh. 12 - For the reaction NH3(g)+H2S(g)NH4HS(s) K = 400. at...Ch. 12 - Prob. 116IPCh. 12 - In a solution with carbon tetrachloride as the...Ch. 12 - Prob. 118IPCh. 12 - A gaseous material XY(g) dissociates to some...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Hi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forwardHi!! Please provide a solution that is handwritten. Ensure all figures, reaction mechanisms (with arrows and lone pairs please!!), and structures are clearly drawn to illustrate the synthesis of the product as per the standards of a third year organic chemistry course. ****the solution must include all steps, mechanisms, and intermediate structures as required. Please hand-draw the mechanisms and structures to support your explanation. Don’t give me AI-generated diagrams or text-based explanations, no wordy explanations on how to draw the structures I need help with the exact mechanism hand drawn by you!!! I am reposting this—ensure all parts of the question are straightforward and clear or please let another expert handle it thanks!!arrow_forward. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B 2°C. +2°C. < cleavage Bond A • CH3 + 26. t cleavage 2°C• +3°C• Bond C Cleavage CH3 ZC '2°C. 26. E Strongest 3°C. 2C. Gund Largest BDE weakest bond In that molecule a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest C bond Produces A Weakest Bond Most Strongest Bond Stable radical Strongest Gund produces least stable radicals b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. 人 8°C. formed in bound C cleavage ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. methyl radical •CH3 formed in bund A Cleavagearrow_forward
- Which carbocation is more stable?arrow_forwardAre the products of the given reaction correct? Why or why not?arrow_forwardThe question below asks why the products shown are NOT the correct products. I asked this already, and the person explained why those are the correct products, as opposed to what we would think should be the correct products. That's the opposite of what the question was asking. Why are they not the correct products? A reaction mechanism for how we arrive at the correct products is requested ("using key intermediates"). In other words, why is HCl added to the terminal alkene rather than the internal alkene?arrow_forward
- My question is whether HI adds to both double bonds, and if it doesn't, why not?arrow_forwardStrain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: H eclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 (Calculate your answer to the nearest 0.1 energy unit, and be sure to specify units, kJ/mol or kcal/mol. The answer is case sensitive.) H. H Previous Nextarrow_forwardA certain half-reaction has a standard reduction potential Ered +1.26 V. An engineer proposes using this half-reaction at the anode of a galvanic cell that must provide at least 1.10 V of electrical power. The cell will operate under standard conditions. Note for advanced students: assume the engineer requires this half-reaction to happen at the anode of the cell. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the minimum. Round your answer to 2 decimal places. If there is no lower limit, check the "no" box.. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have? If so, check the "yes" box and calculate the maximum. Round your answer to 2 decimal places. If there is no upper limit, check the "no" box. yes, there is a minimum. 1 red Πν no minimum Oyes, there is a maximum. 0 E red Dv By using the information in the ALEKS…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY