(a) Interpretation: The name of the given shape of a molecule is to be stated. Concept Introduction: VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule. The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
(a) Interpretation: The name of the given shape of a molecule is to be stated. Concept Introduction: VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule. The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
Solution Summary: The author explains that VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules.
The name of the given shape of a molecule is to be stated.
Concept Introduction:
VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule.
The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
Interpretation Introduction
(b)
Interpretation:
The name of the given shape of a molecule is to be stated.
Concept Introduction:
VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule.
The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
Interpretation Introduction
(c)
Interpretation:
The name of the given shape of a molecule is to be stated.
Concept Introduction:
VSEPR theory is an important model that is frequently used in chemistry to decide the shape and geometry of the molecules. VSEPR model is the extension of Lewis model. As the Lewis model is not able to explain the shape of the molecules. In terms of electron density it is given that both the bonding electrons as well as lone pair of electrons holds the shape of the molecule.
The shape in VSEPR model gives specific angles between the bonds for the corresponding shape and these angles are known as bond angles.
PLEASE READ!!! I DONT WANT EXAMPLES, I DONT WANT WORDS OR PARAGRAPHS FOR THE MECHANISM!!! THANKS
First image: QUESTION 6. I have to show, with ARROWS and STRUCTURES, the mechanism of the reaction at the bottom. Also I have to show by mecanism why the reaction wouldn't work if the alcohol was primary.
I also tried to draw the mechanism, tell me what to change. Please note that its an AMIDE thats formed not an AMINE the nitrogen has ONE hydrogen and one Phenyl-C-Phenyl. I already asked for this mechanism and got as a final product ...-NH2 not whats shown on the picture, thank you
Ths second part. QUESTION 3. I just need a way to synthesize the lactone A, I already started please continue from where I left it
Second image: I simply need the products, substrates or reagents, thank you
Indicate how to prepare a 10% sodium hydroxide (NaOH) solution to a slightly alkaline pH.