Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 1ETSQ
To determine
The reinforcing material with the highest strength available for composite.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. For the composite block shown, determine (a) the value of h if the portion of the load carried by
the aluminum plates is half the portion of the load carried by the brass core, (b) the total load if
the stress in the brass is 80 Mpa.
P
Rigid end plate
Aluminum Plates
(E=70 GPa)
Brass Core
(E=105 GPa)
40 mm
I
h
60 mm
300 mm
A bar having the cross section shown has been formed by securely bonding brass and ahumimum stock. Using the data given
below, determine the largest permissible bending moment when the composite bar is bent about a horizontal axis.
Aluminum
Brass
SO GPa
Moduhus of elasticity
Allowable stress
100 GPa
100 MPa
160 MPa
M =
kN-m
20 mm
20 mm
Aluminum
20 mm
Brass
46 mm
20 mm
46 mm
A bar having the cross section shown has been formed by securely bonding brass and aluminum
stock. Taking h= 9 mm and using the data given below, determine the largest permissible bending
moment when the composite bar is bent about a horizontal axis.
Brass
Aluminum
30 mm
Modulus of elasticity
Allowable stress
h
30 mm
h
Aluminum
70 GPa
100 MPa
The largest permissible bending moment is
Brass
105 GPa
160 MPa
1.17 kN-m.
Chapter 12 Solutions
Materials Science And Engineering Properties
Ch. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Composite _________ is produced by laying fibers...Ch. 12 - Prob. 10CQ
Ch. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 28CQCh. 12 - Prob. 1ETSQCh. 12 - Prob. 2ETSQCh. 12 - Prob. 3ETSQCh. 12 - Prob. 4ETSQCh. 12 - Prob. 5ETSQCh. 12 - Prob. 6ETSQCh. 12 - Prob. 7ETSQCh. 12 - Prob. 8ETSQCh. 12 - Prob. 9ETSQCh. 12 - Prob. 10ETSQCh. 12 - In Example Problem 12.1, a uniaxial composite...Ch. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Estimate the transverse tensile strength of the...Ch. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A bar having the cross section shown has been formed by securely bonding brass andaluminum stock. Using the data given below, determine the largest permissible bendingmoment when the composite bar is bent about a horizontal axis.arrow_forwardFor the composite bar indicated, determine the permissible bending moment when the bar is bent about a vertical axis. Aluminum stress is 100 %3D MPa, Brass stress is 160 MPa, Eb = 105 GPa, Ea = 70 GPa Brass 6 mm Aluminum 30 mm 6 mm -30 30 mmarrow_forwardBefore solve the problem please read the question carefully and give me right solution according to the questionarrow_forward
- A bar having the cross section shown has been formed by securely bonding brass and aluminum stock. Using the data given below, determine the largest permissible bending moment when the composite bar is bent about a horizontal axis.Modulus of elasticity 70 GPa,105 GPa Allowable stress100 MPa,160 MPaarrow_forward1. Three metal strips, each 40 mm height, are bonded together to form the composite beam shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and 70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al= 100 MPa, for the steel (Gallow)st 150 MPa and (Gallow)br=200 MPa for brass determine the maximum allowable intensit of w of the uniform distributed load. 2w 2m Aluminum Brass Steel 40 mm- 10 mm 10 mm 20 mmarrow_forward1. Three metal strips, each 40 mm height, are bonded together to form the composite beam shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and 70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al= 100 MPa, for the steel (Gallow)s=150 MPa and (Gallow)b= 200 MPa for brass determine the maximum allowable intensit of w of the uniform distributed load. 2w Aluminum 2w 10 mm Brass 10 mm Steel 20 mm 2m - 40 mmarrow_forward
- A 1500 mm long composite bar consists of aluminum and steel as shown. The cross-sectional area of the aluminum bar is twice that of the steel bar. If the assembly is exposed to an axial tensile load of 250 kN, determine the lengths of each of the components if the elongation of the aluminum is the same with that of the steel. The modulus of elasticity of steel E = 200 GPa and for the aluminum is one-third of the steel.arrow_forwardThe following are functions of a matrix, EXCEPT: Subjects the fibers, which carry most of the load, to stresses Reduces the propagation of cracks in the composíte O Subjects the fibers from physical damage and the environmentarrow_forwarda) Determine the location of the centroid with respect to the point P; y = mm Submit part Unanswered b) Determine the moment of inertia l with respect to the centroidal axes. x106 mm*arrow_forward
- PROBLEM 2: The composite block shown carries a load P transmitted through an end bearing plate as shown. If the total load to be carried by the aluminum plates is to be half as the load carried by the brass core, what should the dimension h of each aluminum plate be? Brass core Rigid end plate (E = 105 GPa) Aluminum plates (E = 70 GPa) P FINAL ANSWERS h mm 300 mm 60 mm 40 mm harrow_forwardWhat median provides a structural component in a composite? The medium that provides the structural component in a composite is the fiber material, such as _____fibers and ______fibers.arrow_forwardThe composite bar, firmly attached to unyielding supports, is initially stress free. What maximum axial load P can be applied if the allowable stresses are 100 MPa for aluminum and 140 MPa for steel? Bronze Steel A = 1800 mm² A = 1125 mm? E = 83 GPa %3D E = 200 GPa %3D P -450 mm- 360 mm·arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
The History of Composite Materials, From Brick to Bakelite to Biomimetic Hybrids; Author: Autodesk;https://www.youtube.com/watch?v=VS_Kg-VEvzE;License: Standard YouTube License, CC-BY