Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 10CQ
To determine
The composite which produces no shear strains when stressed in tension.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. For the composite block shown, determine (a) the value of h if the portion of the load carried by
the aluminum plates is half the portion of the load carried by the brass core, (b) the total load if
the stress in the brass is 80 Mpa.
P
Rigid end plate
Aluminum Plates
(E=70 GPa)
Brass Core
(E=105 GPa)
40 mm
I
h
60 mm
300 mm
1. Three metal strips, each 40 mm height, are bonded together to form the composite beam
shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and
70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al=
100 MPa, for the steel (Gallow)st 150 MPa and (Gallow)br=200 MPa for brass determine
the maximum allowable intensit of w of the uniform distributed load.
2w
2m
Aluminum
Brass
Steel
40 mm-
10 mm
10 mm
20 mm
1. Three metal strips, each 40 mm height, are bonded together to form the composite beam
shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and
70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al=
100 MPa, for the steel (Gallow)s=150 MPa and (Gallow)b= 200 MPa for brass determine
the maximum allowable intensit of w of the uniform distributed load.
2w
Aluminum
2w
10 mm
Brass
10 mm
Steel
20 mm
2m
- 40 mm
Chapter 12 Solutions
Materials Science And Engineering Properties
Ch. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Composite _________ is produced by laying fibers...Ch. 12 - Prob. 10CQ
Ch. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 28CQCh. 12 - Prob. 1ETSQCh. 12 - Prob. 2ETSQCh. 12 - Prob. 3ETSQCh. 12 - Prob. 4ETSQCh. 12 - Prob. 5ETSQCh. 12 - Prob. 6ETSQCh. 12 - Prob. 7ETSQCh. 12 - Prob. 8ETSQCh. 12 - Prob. 9ETSQCh. 12 - Prob. 10ETSQCh. 12 - In Example Problem 12.1, a uniaxial composite...Ch. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Estimate the transverse tensile strength of the...Ch. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Composite _________ is produced by laying fibers in random directions in a plane.arrow_forwardComposite materials can be reinforced with: a.)Fibres b.)Whiskers c.)Particles d.)All of the abovearrow_forwardA solid rod of bronze 20 mm in diameter is surrounded by a fitting steel cylinder of external diameter 28 mm. If the permissible bending stress in bronze and steel are 100 and 150 N/mm², find the moment of resistance of the composite section. The Young's modulus for steel may be taken as 1.75 times that of bronze.arrow_forward
- 1. Three metal striips, each 40 mm height, are bonded together to form the composite beam shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and 70 GPa for the aluminium. If the allowable bending stress for the aluminum (Galow= 100 MPa, for the steel (Galow)kr=150 MPa and (Galow)or 200 MPa for brass determine the maximum allowable intensit of w of the uniform distributed load. Aluminum 10 mm Brass 10 mm Steel 20 mm 40 mmarrow_forwardA bar having the cross section shown has been formed by securely bonding brass and ahumimum stock. Using the data given below, determine the largest permissible bending moment when the composite bar is bent about a horizontal axis. Aluminum Brass SO GPa Moduhus of elasticity Allowable stress 100 GPa 100 MPa 160 MPa M = kN-m 20 mm 20 mm Aluminum 20 mm Brass 46 mm 20 mm 46 mmarrow_forwardThe following are functions of a matrix, EXCEPT: Subjects the fibers, which carry most of the load, to stresses Reduces the propagation of cracks in the composíte O Subjects the fibers from physical damage and the environmentarrow_forward
- A bar having the cross section shown has been formed by securely bonding brass and aluminum stock. Taking h= 9 mm and using the data given below, determine the largest permissible bending moment when the composite bar is bent about a horizontal axis. Brass Aluminum 30 mm Modulus of elasticity Allowable stress h 30 mm h Aluminum 70 GPa 100 MPa The largest permissible bending moment is Brass 105 GPa 160 MPa 1.17 kN-m.arrow_forwardA steel bar and an aluminum bar are bonded together as shown to form a composite beam. Knowing that the vertical shear in the beam is 4 kips and that the modulus of elasticity is 29 * 106 psi for the steel and 10.6 *106 psi for the aluminum, determine (a) the aver-age shearing stress at the bonded surface, (b) the maximum shearing stress in the beam.arrow_forwardThe strain distribution across a composite section under flexure is .nonlinear True O False Oarrow_forward
- a) Determine the location of the centroid with respect to the point P; y = mm Submit part Unanswered b) Determine the moment of inertia l with respect to the centroidal axes. x106 mm*arrow_forwardAn element representative of a composite comprising an isotropic fiber enveloped by the isotropic resin is shown in Figure 1. Note that the two materials stick together perfectly and that the external surface of the element is free of stress. Calculate the axial stress in the fiber (of) and that in the resin (om) in the middle of the axis longitudinal fiber (L/ 2) using the material strength approach in the case where the element is exposed to a change in temperature AT, depending on following variables The thermal expansion coefficients af and am • The Af and Am sections • The moduli of elasticity Ef and Em • AT Guide: There is no external force • Relations to consider: balance, geometric compatibility and relation stress-strain. Fibre : At, Er, Of, af Matrice : Am, Em, Ớm, đmarrow_forwardThe composite bar, firmly attached to unyielding supports, is initially stress free. What maximum axial load P can be applied if the allowable stresses are 80 MPa for aluminum and 144 MPa for steel? Steel Aluminum A = 1125 mm2 E = 70 GPa A = 1800 mm? E = 200 GPa 450 mm- 360 mm-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
The History of Composite Materials, From Brick to Bakelite to Biomimetic Hybrids; Author: Autodesk;https://www.youtube.com/watch?v=VS_Kg-VEvzE;License: Standard YouTube License, CC-BY