Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 16CQ
To determine
The assumptions made for fibers through a satisfactory model of transverse strength of a uniaxial composite material.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
for a fiber reinforced composite material, assume Fibre's volume fraction is 0.3. what is the effective tensile strength of the composite if the strength of fiber is 150GPa and that of matrix is 16GPa
When looking up data for composite materials, it is important to:
a.)Make sure the volume fraction of the fibres is specified
b.)The orientation of each fibre layer is specified
c.)The type of resin/matric is specified
d.)All of the above
Write the three functions of the matrix phase in fiber-reinforced composites (FRPs). Briefly state the reason for the need for a strong bond between the fibers and the matrix.
Chapter 12 Solutions
Materials Science And Engineering Properties
Ch. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Composite _________ is produced by laying fibers...Ch. 12 - Prob. 10CQ
Ch. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 28CQCh. 12 - Prob. 1ETSQCh. 12 - Prob. 2ETSQCh. 12 - Prob. 3ETSQCh. 12 - Prob. 4ETSQCh. 12 - Prob. 5ETSQCh. 12 - Prob. 6ETSQCh. 12 - Prob. 7ETSQCh. 12 - Prob. 8ETSQCh. 12 - Prob. 9ETSQCh. 12 - Prob. 10ETSQCh. 12 - In Example Problem 12.1, a uniaxial composite...Ch. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Estimate the transverse tensile strength of the...Ch. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- In Example Problem 12.1, a uniaxial composite material is made into a circular rod Vbith a 1.27-cm diameter from 70 volume percent continuous carbon fibers and 30 volume percent epoxy. The rod is subject to an axial force of 100,000 N. The composite matcrial in Example Problem 12.1 is to be replaced with a less expensive composite made of 70 volume percent continuous E-glass fibers and 30 volume percent epoxy. The elastic moduli are 5 GPa for the epoxy resin and 72.4 GPa fos the E-glass. (a) Compare the elastic modulus, composite strain, fiber and matrix stresses, and density of this composite with the carbon epoxy composite in Example Problem 12.1. Usc the density of UHM carbon, and assume the density of the epoxy is 1.2g/cm3 . (b) Can both the E-glass fiber and matrix withstand the applied force?arrow_forwardAn element representative of a composite comprising an isotropic fiber enveloped by the isotropic resin is shown in Figure 1. Note that the two materials stick together perfectly and that the external surface of the element is free of stress. Calculate the axial stress in the fiber (of) and that in the resin (om) in the middle of the axis longitudinal fiber (L/ 2) using the material strength approach in the case where the element is exposed to a change in temperature AT, depending on following variables The thermal expansion coefficients af and am • The Af and Am sections • The moduli of elasticity Ef and Em • AT Guide: There is no external force • Relations to consider: balance, geometric compatibility and relation stress-strain. Fibre : At, Er, Of, af Matrice : Am, Em, Ớm, đmarrow_forwardFind the centroid of the following composite object................arrow_forward
- Name three functions of the matrix phase in fiber-reinforced composites. State the reason for the need for a strong bond between the fibers and the matrix.arrow_forwardName three functions of the matrix phase in fiber-reinforced composites.State the reason for the need for a strong bond between the fibers and the matrix.arrow_forwardCalculate the modulus of elasticity of fiberglass under isostrain condition if the fiberglass consists of 70% E-glass fibers and 30% epoxy by volume. Also, calculate the percentage of load carried by the glass fibers. The moduli of elasticity of the glass fibers and the epoxy are 70.5 and 6.9 GPa, respectively. If a longitudinal stress of 60 MPa is applied on the composite with a cross-sectional area ofm300 mm2, what is the load carried by each of the fiber and the matrix phases? What is the strain sustained by each of the fiber and the matrix phases?arrow_forward
- A ceramic matrix composite contains internal flaws as largeas0.001 cm in length. The plane strain fracture toughness of the composite is 45 MPaVm and the tensile strength is 550 MPa. Will the stress cause the composite to fail before the tensile strength is reached? Assume that f- 1.arrow_forwardA 1500 mm long composite bar consists of aluminum and steel as shown. The cross-sectional area of the aluminum bar is twice that of the steel bar. If the assembly is exposed to an axial tensile load of 250 kN, determine the lengths of each of the components if the elongation of the aluminum is the same with that of the steel. The modulus of elasticity of steel E = 200 GPa and for the aluminum is one-third of the steel.arrow_forwardA steel bar and an aluminum bar are bonded together as shown to form a composite beam. Knowing that the vertical shear in the beam is 4 kips and that the modulus of elasticity is 29 * 106 psi for the steel and 10.6 *106 psi for the aluminum, determine (a) the aver-age shearing stress at the bonded surface, (b) the maximum shearing stress in the beam.arrow_forward
- Composite materials can be reinforced with: a.)Fibres b.)Whiskers c.)Particles d.)All of the abovearrow_forwardCalculate the modulus of elasticity of fiberglass under isostrain condition if the fiberglass consists of 70% E-glass fibers and 30% epoxy by volume. Also, calculate the percentage of load carried by the glass fibers. The moduli of elasticity of the glass fibers and the epoxy are 70.5 and 6.9 GPa, respectively. If a longitudinal stress of 60 MPa is applied on the composite with a cross-sectional area of 300 mm2, what is the load carried by each of the fiber and the matrix phases?What is the strain sustained by each of the fiber and the matrix phases?arrow_forwardA composite sample of carbon reinforced epoxy has dimensions of in 20 in x 20 in x 0.135 in and mass of 3 lb. The carbon fibres have a modulus of elasticity of 80(106) lb/in2 and a density of 0.15 lb/in3. The epoxy matrix has modulus of elasticity of 0.90(106) lb/in2 and a density of 0.05 lb/in3. Assume there are no voids in the sample, calculate the volume fraction of: (i) The carbon fibres (ii) The epoxy matrix in the sample.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
The History of Composite Materials, From Brick to Bakelite to Biomimetic Hybrids; Author: Autodesk;https://www.youtube.com/watch?v=VS_Kg-VEvzE;License: Standard YouTube License, CC-BY