Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 13CQ
To determine
The fiber stress at the center of the fiber length at a critical fiber length in a short fiber composite.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A steel bar and an aluminum bar are bonded together as shown to form a composite beam. Knowing that the vertical shear in the beam is 4 kips and that the modulus of elasticity is 29 * 106 psi for the steel and 10.6 *106 psi for the aluminum, determine (a) the aver-age shearing stress at the bonded surface, (b) the maximum shearing stress in the beam.
Calculate the modulus of elasticity of fiberglass under isostrain condition if the fiberglass consists of 70% E-glass fibers and 30% epoxy by volume. Also, calculate the percentage of load carried by the glass fibers. The moduli of elasticity of the glass fibers and the epoxy are 70.5 and 6.9 GPa, respectively. If a longitudinal stress of 60 MPa is applied on the composite with a cross-sectional area ofm300 mm2, what is the load carried by each of the fiber and the matrix phases? What is the strain sustained by each of the fiber and the matrix phases?
4. For the composite block shown, determine (a) the value of h if the portion of the load carried by
the aluminum plates is half the portion of the load carried by the brass core, (b) the total load if
the stress in the brass is 80 Mpa.
P
Rigid end plate
Aluminum Plates
(E=70 GPa)
Brass Core
(E=105 GPa)
40 mm
I
h
60 mm
300 mm
Chapter 12 Solutions
Materials Science And Engineering Properties
Ch. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Composite _________ is produced by laying fibers...Ch. 12 - Prob. 10CQ
Ch. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 28CQCh. 12 - Prob. 1ETSQCh. 12 - Prob. 2ETSQCh. 12 - Prob. 3ETSQCh. 12 - Prob. 4ETSQCh. 12 - Prob. 5ETSQCh. 12 - Prob. 6ETSQCh. 12 - Prob. 7ETSQCh. 12 - Prob. 8ETSQCh. 12 - Prob. 9ETSQCh. 12 - Prob. 10ETSQCh. 12 - In Example Problem 12.1, a uniaxial composite...Ch. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Estimate the transverse tensile strength of the...Ch. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate the modulus of elasticity of fiberglass under isostrain condition if the fiberglass consists of 70% E-glass fibers and 30% epoxy by volume. Also, calculate the percentage of load carried by the glass fibers. The moduli of elasticity of the glass fibers and the epoxy are 70.5 and 6.9 GPa, respectively. If a longitudinal stress of 60 MPa is applied on the composite with a cross-sectional area of 300 mm2, what is the load carried by each of the fiber and the matrix phases?What is the strain sustained by each of the fiber and the matrix phases?arrow_forward1. Three metal strips, each 40 mm height, are bonded together to form the composite beam shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and 70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al= 100 MPa, for the steel (Gallow)st 150 MPa and (Gallow)br=200 MPa for brass determine the maximum allowable intensit of w of the uniform distributed load. 2w 2m Aluminum Brass Steel 40 mm- 10 mm 10 mm 20 mmarrow_forwardAn epoxy is randomly reinforced with E-Glass fibers with 0.0012 in. diameter, 0.5 in. length, 0.5 * 106 psi ultimate tensile strength, and 7.2 ksi shear strength. Does this fiber length fully strengthen the composite? What is the minimum fiber length that would make the composite continuously reinforced?arrow_forward
- 1. Three metal strips, each 40 mm height, are bonded together to form the composite beam shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and 70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al= 100 MPa, for the steel (Gallow)s=150 MPa and (Gallow)b= 200 MPa for brass determine the maximum allowable intensit of w of the uniform distributed load. 2w Aluminum 2w 10 mm Brass 10 mm Steel 20 mm 2m - 40 mmarrow_forwardFind the centroid of the following composite object................arrow_forwardThe following are functions of a matrix, EXCEPT: Subjects the fibers, which carry most of the load, to stresses Reduces the propagation of cracks in the composíte O Subjects the fibers from physical damage and the environmentarrow_forward
- Name three functions of the matrix phase in fiber-reinforced composites. State the reason for the need for a strong bond between the fibers and the matrix.arrow_forwardName three functions of the matrix phase in fiber-reinforced composites.State the reason for the need for a strong bond between the fibers and the matrix.arrow_forwardAn element representative of a composite comprising an isotropic fiber enveloped by the isotropic resin is shown in Figure 1. Note that the two materials stick together perfectly and that the external surface of the element is free of stress. Calculate the axial stress in the fiber (of) and that in the resin (om) in the middle of the axis longitudinal fiber (L/ 2) using the material strength approach in the case where the element is exposed to a change in temperature AT, depending on following variables The thermal expansion coefficients af and am • The Af and Am sections • The moduli of elasticity Ef and Em • AT Guide: There is no external force • Relations to consider: balance, geometric compatibility and relation stress-strain. Fibre : At, Er, Of, af Matrice : Am, Em, Ớm, đmarrow_forward
- A 1500 mm long composite bar consists of aluminum and steel as shown. The cross-sectional area of the aluminum bar is twice that of the steel bar. If the assembly is exposed to an axial tensile load of 250 kN, determine the lengths of each of the components if the elongation of the aluminum is the same with that of the steel. The modulus of elasticity of steel E = 200 GPa and for the aluminum is one-third of the steel.arrow_forwardfor a fiber reinforced composite material, assume Fibre's volume fraction is 0.3. what is the effective tensile strength of the composite if the strength of fiber is 150GPa and that of matrix is 16GPaarrow_forwardComposite _________ is produced by laying fibers in random directions in a plane.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
The History of Composite Materials, From Brick to Bakelite to Biomimetic Hybrids; Author: Autodesk;https://www.youtube.com/watch?v=VS_Kg-VEvzE;License: Standard YouTube License, CC-BY