Concept explainers
(a)
The elastic modulus of composite in axial direction.
(a)
Answer to Problem 12.8P
The elastic modulus of composite in axial direction is
Explanation of Solution
Given:
Volume percent of Kevlar fiber is
Volume percent of epoxy is
Elastic modulus of Kevlar is
Elastic modulus of epoxy is
Concept used:
Write the expression for elastic modulus of composite.
Here,
Calculation:
Substitute
Conclusion:
Thus, the elastic modulus of composite in axial direction is
(b)
The elastic modulus of composite in transverse direction.
(b)
Answer to Problem 12.8P
The elastic modulus of composite in transverse direction is
Explanation of Solution
Concept used:
Write the expression for elastic modulus of E-glass composite in the direction perpendicular to fiber axis.
Here,
Calculation:
Substitute
Conclusion:
Thus, the elastic modulus of composite in transverse direction is
(c)
The axial strainin composite due to axial stress.
(c)
Answer to Problem 12.8P
The axial strain in composite due to axial stress is
Explanation of Solution
Given:
Axial stress is
Concept used:
Write the expression for axial strain in composite.
Here,
Calculation:
Substitute
Conclusion:
Thus, the axial strain in composite due to axial stress is
(d)
The stresses in the fiber and in matrix of composite due to axial stress.
(d)
Answer to Problem 12.8P
The stresses in the fiber and in matrix of composite due to axial stress is
Explanation of Solution
Given:
Transverse stress is
Tensile strength of Kevlar is
Concept used:
Write the expression for stress in fiber by considering the iso-strain model for axial strain.
Here,
Write the expression for stress in matrix by considering the iso-strain model for axial strain.
Here,
Calculation:
Substitute
Substitute
Conclusion:
Thus, the stresses in the fiber and in matrix of composite due to axial stress is
(e)
Whether each of the component can withstand the axial stress or not, if not what is the fracture stress.
(e)
Explanation of Solution
The calculated stress for fiber is very less than the minimum tensile strength of Kevlar. This indicates that the fiber is sufficiently string to withstand the stress.
Matrix can also hold the tensile stress as the minimum tensile strength of epoxy resin is larger than the calculate stress in it.
(f)
The transverse fracture stress.
(f)
Answer to Problem 12.8P
The transverse fracture stress is
Explanation of Solution
Given:
Tensile strength of epoxy is
Concept used:
Write the expression for transverse tensile strength of composite.
Here,
Calculation:
Substitute
Conclusion:
Thus, the transverse fracture stress is
Want to see more full solutions like this?
Chapter 12 Solutions
Materials Science And Engineering Properties
- F1 ୪ α В F2 You and your friends are planning to move the log. The log needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? = Your friends had to pull at: magnitude in Newton, F2 = 2405 direction in degrees, B = -7.72 × N × degarrow_forwardNeed hekoarrow_forwardA B 0 B F C The force F = 319 N acts on the frame shown in picture. Resolve this force into components acting along memebers AB and AC to determine the magnitude of each component. The angle mesurements are 0 = 33° and B = 40°. magnitude in member AB in Newton: N magnitude in memeber AC in Newton: Narrow_forward
- The force vector F has a magnitude of F = 450 lb and acts 15.7° with respect to vertical as at point A at an angle → = shown. The force F is balanced by the tension forces parallel to the two rods AC and AB such that the vector equation → F+F AC + FAB = 0 is satisfied. Determine the tension forces in the two rods in Cartesian Vector Notation. с a b B CC + BY NC SA 2013 Michael Swanbom A NF Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5.9 ft b C 3 ft 3.1 ft FAC = FAB= ĵ) lb lb + +arrow_forwardF2 Y B V 5 4 3 F1 X F3 → The given forces are F₁ = 20 kN, F2= 28 kN, and F3 = 61 kN, with given ratio for F₁ and angles of B = 51° and y = 67°. Find the resultant force. First in Cartesian Vector Notation: FR = 2 + j) kN Then, find the magnitude and direction: magnitude in kN: kN conventional direction (counter clockwise from positive X axis) in degrees: degarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- My desk has a weight of 193.044 lbf on the Earch's surface where the acceleration of gravity is 32.174 ft $2 What is its weight in pounds force (lbf) on Mars and its mass in pounds mass (lbm) on Mars where the acceleration of gravity is 5.35 ft $2 Weightmars = lbf, Massmars = Ibmarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forwardY F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward
- Please show all steps and give answers in the cartesian coordinate system providedarrow_forwardPlease show all stepsarrow_forward4. The layers of soil in a tube that is 150 mm by 100 mm in cross section is being supplied with water to maintain a constant head difference of 450 mm. The rate of flow is (ANSWER IN PROBLEM 3-C) Water supply h=450 mm hB Out flow Direction of flow Soil Soil Soil A B C 200 200 200 mm mm mm hд = 296 mm and KB = 5.13 x 10-3 cm/s (a) Compute the coefficient of permeability of soil A. (b) Compute the height h at the piezometer attached between B and C. Consider Soils A and B for this. (c) Compute the hydraulic gradient of soil C.arrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning