Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 10ETSQ
To determine
The type of loading under which the wood has highest strength.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. Three metal strips, each 40 mm height, are bonded together to form the composite beam
shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and
70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al=
100 MPa, for the steel (Gallow)st 150 MPa and (Gallow)br=200 MPa for brass determine
the maximum allowable intensit of w of the uniform distributed load.
2w
2m
Aluminum
Brass
Steel
40 mm-
10 mm
10 mm
20 mm
1. Three metal strips, each 40 mm height, are bonded together to form the composite beam
shown. The modulus of elasticity is 210 GPa for the steel, 105 GPa for the brass, and
70 GPa for the aluminium. If the allowable bending stress for the aluminum (Gallow)al=
100 MPa, for the steel (Gallow)s=150 MPa and (Gallow)b= 200 MPa for brass determine
the maximum allowable intensit of w of the uniform distributed load.
2w
Aluminum
2w
10 mm
Brass
10 mm
Steel
20 mm
2m
- 40 mm
(c) In general, wood has greater specified strength for compression perpendicular to
grain than that for tension perpendicular to grain. (
Chapter 12 Solutions
Materials Science And Engineering Properties
Ch. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Composite _________ is produced by laying fibers...Ch. 12 - Prob. 10CQ
Ch. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 28CQCh. 12 - Prob. 1ETSQCh. 12 - Prob. 2ETSQCh. 12 - Prob. 3ETSQCh. 12 - Prob. 4ETSQCh. 12 - Prob. 5ETSQCh. 12 - Prob. 6ETSQCh. 12 - Prob. 7ETSQCh. 12 - Prob. 8ETSQCh. 12 - Prob. 9ETSQCh. 12 - Prob. 10ETSQCh. 12 - In Example Problem 12.1, a uniaxial composite...Ch. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Estimate the transverse tensile strength of the...Ch. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17P
Knowledge Booster
Similar questions
- The composite bar, firmly attached to unyielding supports, is initially stress free. What maximum axial load P can be applied if the allowable stresses are 100 MPa for aluminum and 140 MPa for steel? Bronze Steel A = 1800 mm² A = 1125 mm? E = 83 GPa %3D E = 200 GPa %3D P -450 mm- 360 mm·arrow_forwardQuestion 7 When wood is stretched in the longitudinal direction, most of the stress is taken by a. hydrogen bonds O b. covalent bondsarrow_forward4. For the composite block shown, determine (a) the value of h if the portion of the load carried by the aluminum plates is half the portion of the load carried by the brass core, (b) the total load if the stress in the brass is 80 Mpa. P Rigid end plate Aluminum Plates (E=70 GPa) Brass Core (E=105 GPa) 40 mm I h 60 mm 300 mmarrow_forward
- A composite beam made of steel and bronze has the cross section shown. The cross-sectional dimensions are b, - 0.9 in, b2 - 2.7 in., and d- 1.8 in. The elastic modulus of the steel is E, - 30,000 ksi, and its allowable bending stress is 17 ksi. The elastic modulus of the bronze is E2 - 15,000 ksi, and its allowable bending stress is 14 ksi. Calculate the allowable bending moment that can be applied about the z centroidal axis. Bronze (2) d Steel (1) b2 Part 1 Your answer has been saved. See score details after the due date. Determine the modular ratio in order to transform the steel into an equivalent amount of bronze. Answer: n- Attempts: 1 of 1 used Part 2 Determine the area moment of inertia of the transformed section about the z-axis. Answer: in.4arrow_forwardTwo pieces of wood, 60 mm by 120 mm each are glued together along the 40° joint. The permissible normal stress in the glue is limited to 100 MPa. The maximum safe load that can be applied at the joint is P+ 40° 60 mm Parrow_forwardThe composite bar, firmly attached to unyielding supports, is initially stress free. What maximum axial load P can be applied if the allowable stresses are 80 MPa for aluminum and 144 MPa for steel? Steel Aluminum A = 1125 mm2 E = 70 GPa A = 1800 mm? E = 200 GPa 450 mm- 360 mm-arrow_forward
- A steel bar and an aluminum bar are bonded together as shown to form a composite beam. Knowing that the vertical shear in the beam is 4 kips and that the modulus of elasticity is 29 * 106 psi for the steel and 10.6 *106 psi for the aluminum, determine (a) the aver-age shearing stress at the bonded surface, (b) the maximum shearing stress in the beam.arrow_forwardA bar having the cross section shown has been formed by securely bonding brass and aluminum stock. Taking h= 9 mm and using the data given below, determine the largest permissible bending moment when the composite bar is bent about a horizontal axis. Brass Aluminum 30 mm Modulus of elasticity Allowable stress h 30 mm h Aluminum 70 GPa 100 MPa The largest permissible bending moment is Brass 105 GPa 160 MPa 1.17 kN-m.arrow_forwarda) Determine the location of the centroid with respect to the point P; y = mm Submit part Unanswered b) Determine the moment of inertia l with respect to the centroidal axes. x106 mm*arrow_forward
- An ASTM cast iron, grade 30, has ultimate strength at tension Sut = 350 MPa, and at compression Suc = 1150 MPa. it carries static loading resulting in the stress state listed below at the critical locations. Using the static failure analysis estimate the factor of safety. σA = 127 MPa, σB = -264 MPa.arrow_forwardSub question: At what temperature will the aluminum and steel segments in this problem have stresses of equal magnitude after the 50-kip force is applied? Show full solutionarrow_forwardThe structural efficiency in managing bending, shear and for steel vs concretearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning