Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 12, Problem 18CQ
To determine
The reason for the formation of cracks, when a compressive stress acts in the direction parallel to the fibers of a composite.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEM 6.56
50 mm
A steel bar and an aluminum bar are bonded together as shown to form a
composite beam. Knowing that the vertical shear in the beam is 18 kN and that
the modulus of elasticity is 200 GPa for the steel and 73 GPa for the aluminum,
determine (a) the average stress at the bonded surface, (b) the maximum stress
Aluminum
25 mm
Steel
in the beam.
36 mm
Help
The composite bar, firmly attached to
unyielding supports, is initially stress free.
What maximum axial load P can be applied
if the allowable stresses are 80 MPa for
aluminum and 144 MPa for steel?
Steel
Aluminum
A = 1125 mm2
E = 70 GPa
A = 1800 mm?
E = 200 GPa
450 mm-
360 mm-
Chapter 12 Solutions
Materials Science And Engineering Properties
Ch. 12 - Prob. 1CQCh. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Composite _________ is produced by laying fibers...Ch. 12 - Prob. 10CQ
Ch. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Prob. 23CQCh. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 26CQCh. 12 - Prob. 27CQCh. 12 - Prob. 28CQCh. 12 - Prob. 1ETSQCh. 12 - Prob. 2ETSQCh. 12 - Prob. 3ETSQCh. 12 - Prob. 4ETSQCh. 12 - Prob. 5ETSQCh. 12 - Prob. 6ETSQCh. 12 - Prob. 7ETSQCh. 12 - Prob. 8ETSQCh. 12 - Prob. 9ETSQCh. 12 - Prob. 10ETSQCh. 12 - In Example Problem 12.1, a uniaxial composite...Ch. 12 - Prob. 12.2PCh. 12 - Prob. 12.3PCh. 12 - Prob. 12.4PCh. 12 - Prob. 12.5PCh. 12 - Prob. 12.6PCh. 12 - Estimate the transverse tensile strength of the...Ch. 12 - Prob. 12.8PCh. 12 - Prob. 12.9PCh. 12 - Prob. 12.10PCh. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17P
Knowledge Booster
Similar questions
- Estimate the transverse tensile strength of the concrete in Problem 12.6.arrow_forwardThe stress value in reinforcement at the commencement of first crack in concrete is N/mm². (Assume modulus of elasticity of steel as 216 GPa)arrow_forwardThe composite bar, firmly attached to unyielding supports, is initially stress free. What maximum axial load P can be applied if the allowable stresses are 100 MPa for aluminum and 140 MPa for steel? Bronze Steel A = 1800 mm² A = 1125 mm? E = 83 GPa %3D E = 200 GPa %3D P -450 mm- 360 mm·arrow_forward
- (d) What is the role of surface energies of both matrix and reinforcements in order to enhance the fracture toughness of the composite?arrow_forwardA composite beam is made of two brass [E = 99 GPa] plates bonded to an aluminum [E = 72 GPa] bar, as shown. The beam is subjected to a bending moment of 2010 N-m acting about the z axis. Assume b-44 mm, d₁-37 mm, d₂-11 mm. Determine: (a) the maximum bending stresses Obr, al in the brass plates and the aluminum bar. (b) the stress in the brass brj at the joints where the two materials are bonded together. Brass (2) Aluminum (1) Brass (2) Answers: (a) Obr = (b) Obrj = i b d₂ d₁ MPa, oal = MPa. MPa.arrow_forwardThe strain distribution across a composite section under flexure is .nonlinear True O False Oarrow_forward
- A composite beam is made of two brass [E - 111 GPa] bars bonded to two aluminum [E - 72 GPa] bars, as shown. The beam is subjected to a bending moment of 250 N-macting about the z axis. Using a - 10 mm, b- 65 mm, c- 20 mm, and d- 45 mm, calculate (a) the maximum bending stress in the aluminum bars. (b) the maximum bending stress in the brass bars. Aluminum Brass Brass Aluminum Answers: (a) Oa i MPa (b) Oer MPa Save for Later Attempts: 0 of 1 used Submit Answerarrow_forwardProblem # 4 A 4 in x 3 in steel block follows an elasto-perfectly plastic stress strain relation with a yielding stress 0,-60 ksi and a modulus of elasticity E=30 x 10° psi. The block is reinforced on the top and bottom by 1 in x 3 in plates that are perfectly elastic having a rupture stress O,-60 ksi and a modulus of elasticity E=10 x10° psi. The stress-strain relation for the two materials are given below. • Determine the largest moment M that can be applied to the cross section before it fails. • Determine the magnitude of the distributed load w (kip/ft) that can be applied to a 12-ft beam made of that cross section. 1 in 4 in. M 1 in 6 ft 6 ft 60 ksi 60 ksi 3 in. Gy E-30x10'ksi E-10x10 ksi 6x 10 stress-strain diagram for 4 in x 3 in stress-strain diagram for 3 in x 1 in platesarrow_forward3 For a composite bar as shown below, what is the relation between axial deformation and thermal deformations in the bar? Cu tube (1) Steel bar (2) D d- Where, o,, o, = stresses in Cu and steel bar respectively. Coefficient of thermal expansion for Cu and steel bar respectively.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning