
(a)
The strain in composite when stress in matrix is
(a)

Answer to Problem 12.14P
The strain in composite when stress in matrix reaches
Explanation of Solution
Given:
Elastic modulus of polycarbonate matrix is
Maximum allowable stress in matrix is
Concept used:
Write the expression for strain in composite.
Here,
Calculation:
Substitute
Conclusion:
Thus, the strain in composite when stress in matrix reaches
(b)
The fiber stress for continuous fiber composite and identify if this is less than tensile strength of fiber.
(b)

Answer to Problem 12.14P
The fiber stress for continuous fiber composite is
Explanation of Solution
Given:
Elastic modulus of Fiber is
Concept used:
Write the expression for fiber stress.
Here,
Calculation:
Substitute
Conclusion:
Thus, the fiber stress for continuous fiber composite is
(c)
Critical fiber length
(c)

Answer to Problem 12.14P
Critical fiber length is
Explanation of Solution
Given:
Diameter of aramid fiber is
Shear strength of Polycarbonate-aramid interface is
Concept used:
Write the expression for critical aspect ratio.
Here,
Calculation:
Substitute
Conclusion:
Thus, the Critical fiber length is
(d)
Average stress in chopped aramid fiber.
(d)

Answer to Problem 12.14P
Average stress in chopped aramid fiber is
Explanation of Solution
Given:
Length of aramid fiber is
Concept used:
Write the expression for average fiber stress.
Here,
Calculation:
Substitute
Conclusion:
Thus, the average stress in chopped aramid fiber is
(e)
Composite material stress.
(e)

Answer to Problem 12.14P
Composite material stress is
Explanation of Solution
Given:
Volume percentage of aramid chopped fiber is
Volume percent of polycarbonate matrix is
Tensile strength of aramid fiber is
Tensile strength of Polycarbonate is
Concept used:
Write the expression for composite material stress.
Here,
Calculation:
Substitute
Conclusion:
Thus, the composite material stress is
Want to see more full solutions like this?
Chapter 12 Solutions
Materials Science And Engineering Properties
- Show step by step solutionarrow_forwardDraw the shear and the moment diagrams for each of the frames below. If the frame is statically indeterminate the reactions have been provided. Problem 1 (Assume pin connections at A, B and C). 30 kN 2 m 5 m 30 kN/m B 60 kN 2 m 2 m A 22 CO Carrow_forwardThis is an old exam practice question. The answer key says the answer is Pmax = 52.8kN but I am confused how they got that.arrow_forward
- F12-45. Car A is traveling with a constant speed of 80 km/h due north, while car B is traveling with a constant speed of 100 km/h due east. Determine the velocity of car B relative to car A. pload Choose a File Question 5 VA - WB VBA V100 111413 + *12-164. The car travels along the circular curve of radius r = 100 ft with a constant speed of v = 30 ft/s. Determine the angular rate of rotation è of the radial liner and the magnitude of the car's acceleration. Probs. 12-163/164 pload Choose a File r = 400 ft 20 ptsarrow_forwardPlease show step by step how to solve this and show formulararrow_forwardPlease solve this question step by step with dia gramarrow_forward
- Use the second picture to answer the question, Thank you so much for your help!arrow_forwardP6.16 A compound shaft (Figure P6.16) consists of a titanium alloy [G= 6,200 ksi] tube (1) and a solid stainless steel [G= 11,500 ksi] shaft (2). Tube (1) has a length L₁ = 40 in., an outside diameter D₁ = 1.75 in., and a wall thickness t₁ = 0.125 in. Shaft (2) has a length 42 = 50 in. and a diameter d₂ = 1.25 in. If an external torque TB = 580 lb ft acts at pulley B in the direction shown, calculate the torque Tcrequired at pulley C so that the rotation angle of pulley Crelative to A is zero. B Te (2) TB (1) FIGURE P6.16arrow_forward7.43 Neglecting head losses, determine what horsepower the pump must deliver to produce the flow as shown. Here, the elevations at points A, B, C, and D are 124 ft, 161 ft, 110 ft, and 90 ft, respectively. The nozzle area is 0.10 ft². B Nozzle Water C Problem 7.43arrow_forward
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningSteel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,




