THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 6P
Why is the throttling valve not replaced by an isentropic turbine in the ideal vapor-compression refrigeration cycle?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is the throttling valve not replaced by an isentropic turbine in the ideal vapor-compression refrigeration cycle?
Not ai generated please show all steps
Consider the ideal vapor compression cycle operating between 1.4 bar and 9bar using R-125 as the refrigerant, which removes heat from a cold space at a rate of 100kW. If the evaporator outlet was suddenly superheated by 2℃ above saturation, what will be the resulting effect on the cycle?
a.Refrigerant flowrate will decrease, Condenser duty will decrease
b.Refrigerant flowrate will increase, Condenser duty will decrease
c.Refrigerant flowrate will increase, Condenser duty will increase
d.Refrigerant flowrate will decrease, Condenser duty will increase
Chapter 11 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ideal vapor-compression cycle uses R-134a as the working fluid. Recall that the compressor receives refrigerant from the evaporator at Pevap then delivers refrigerant to the condenser at some higher pressure, Pcond. It is also important to know that the condenser and evaporator operate isobarically. For the refrigeration system of interest here, the evaporator and condenser operate at 1.4 bar and 9 bar, respectively. The refrigerant enters the compressor at −10°C (state 1) and exits the condenser (state 3) at 32°C. The compressor operates adiabatically and steadily consumes 4.8 kW of power. The mass flow rate of the refrigerant through the cycle is 7 kg/min. a) What is the exit temperature of the refrigerant out of the compressor? b) The expansion valve is a throttling device. The outlet pressure of the throttling valve is the same as the inlet pressure of the evaporator. What is the quality of the refrigerant at the exit of the expansion valve (state 4)? c) What is the rate of heat…arrow_forward3) A refrigeration plant operates on the vapor-compression cycle and uses refrigerant-134a as the working fluid. The plant has a refrigeration capacity of 190kW. Refrigerant-134a leaves the condenser as a saturated liquid with a pressure of 900kPa, and it leaves the evaporator as a saturated vapor with a pressure of 140kPa. The compressor has an isentropic efficiency of 90% and there is no pressure loss in the piping of the system. Determine a) the mass flow rate of the refrigerant b) the power input to the compressor in kW c) the exergy destruction rates of the compressor and expansion valve in kW if the dead state temperature is 15°C. Warm environment QH Condenser Expansion valve Evaporator J Cold refrigerated space Compressorarrow_forwardAn ideal vapor compression refrigeration cycle with R-134a as the working fluid operates between the pressure limits of 120 kPa and 1000 kPa. The mass fraction of the refrigerant that is in the liquid phase at the inlet of the evaporator is: Please use ur own steamtable Ans : 0.6arrow_forward
- If an ideal refrigeration cycle (using R-134a) operation at evaporator temperature -10 °C and Condenser temperature +30 °C, what is the dryness factor of the Refrigerant at entering evaporator?arrow_forwardA refrigerator operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The condenser operates at 300 psia and the evaporator at 20°F. If an adiabatic, reversible expansion device were available and used to expand the liquid leaving the condenser, how much would the COP improve by using this device instead of the throttle device? The COP improves by % by using the adiabatic, reversible expansion device instead of the throttle device.arrow_forwardConsider the ideal vapor compression cycle operating between 1.2 bar and 8 bar using R-410A as the refrigerant, which removes heat from a cold space at a rate of 100kW. If the condenser outlet was subcooled by 2°C below saturation, which of the following is TRUE?I. The required mass flow of the refrigerant will decrease.II. The COP of the ref will increase. a. Neither I nor IIb. I onlyc. II onlyd. Both I and IIarrow_forward
- A vapor-compression refrigeration cycle with Refrigerant 134a as the working fluid operates with an evapo-rator temperature of 50◦F and a condenser pressure of 180 lbf/in2Saturated vapor enters the compressor. Refrigerantenters the condenser at 140◦F and exits as saturated liquid. The cycle has a refrigeration capacity of 5 tons (a) the refrigerant mass flow rate, in lb/min. b) the compressor isentropic efficiency. (c) the compressor power, in horsepower. (d) the coefficient of performance.arrow_forwardA heat pump tn that operates on the ideal vapor compression cycle.with refrigerant-134a is used to heaț water from 15 to 50 °C at a rate of 0.24 kg/s. The condenser and evaporator pressures are 1.4 and 0.32 MPa, respectively. Determine the power input tó the heat pump where the specific heat of water is 4.18 ik/kg. "C.arrow_forwardwill donw vote if wrongarrow_forward
- A standard vapor-compression cycle using R134a operates with a condensing temperature of 30°C and an evaporating temperature -10°C. If the mass flow rate of the refrigerant is 5 kg/min, determine: a. The compressor power, in kW b. The refrigerating capacity, in tons The coefficient of performance d. Illustrate the cycle in P-h diagram C.arrow_forwardAn ideal refrigeration cycle operates with R134a as the working fluid. The temperature of refrigerant in the condenser and evaporator are 40ºC and -20ºC respectively. The mass flow rate of refrigerant is 0.1 kg/s. Determine the cooling capacity and COP of the plant.arrow_forwardwith solution. pls answer asaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY