THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 11.10, Problem 101P
To determine
The maximum coefficient of performance of the thermoelectric refrigerator and the minimum required power input.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The heat removal rate from a refrigerated space is 7.2 kW and the power input to the
compressor is 1.8 kW. The coefficient of performance (COP) of the refrigerator is
A refrigerator is maintained at 5°C. Heat is removed from the stored food at a rate of 330 kJ/min. What is the refrigerators coefficient of performance if the necessary power input to the
refrigerator is 3.5 kW?
Please evaluate these claims from your thermodynamic perspectives:
i.
An inventor claims to have invented a heat engine that has thermal efficiency
of 85% when operating between two heat reservoirs at 1200K and 300K.
ii.
An inventor claims to have developed a refrigerator that maintains the
refrigerated space at -10°C while operating in a room where the temperature
is 24°C and has a COP of 14.
Chapter 11 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The operating condition for the single compressor in a household refrigerator is the lowest box temperature, which is typically A. 0F B. -20F C. 20F D. 40Farrow_forwardA "cold room" used for low-temperature research is maintained at a constant temperature of 7.00°C. The refrigeration unit vents to outdoor air which is at 27.0°C. The rate at which energy is exhausted to the outdoors is 18.0 kW. The coefficient of performance (COP) of the refrigeration unit is equal to 40.0% of the COP of an ideal Carnot refrigerator. (a) At what rate (in kW) does the refrigeration unit remove energy from the room? (Round your answer to at least two decimal places.) kW (b) What is the power input (in kW) required by the refrigeration unit? kW (c) What is the entropy change of the Universe (in J/K) produced by the refrigeration unit after it operates for 3.00 h? J/K (d) If the outside temperature increases to 33.0°C, what is the percent change in the COP of the refrigeration unit? (Include the sign of the value in your answer.) % Need Help? Read Itarrow_forwardA refrigeration unit absorbs 1 kW of heat from the cold reservoir and rejects 1.3kW of heat to the warm reservoir. What is the unit's coefficient of performance?arrow_forward
- An ideal refrigerator is operating between 37°C and – 13°C. The power required per ton of refrigerator isarrow_forwardA refrigerator remove heat from a refrigerated space at -5°C at a rate of 0.35 kJ/s and rejects it to an environment at 20°C. The minimum required power input isarrow_forwardA refrigerator is rated at a coefficient of performance (COP) of 4. The refrigerated space that it cools requires a peak cooling rate of 30,000 kJ/h. What size of motor (rated in horse-power) is required for the refrigerator?arrow_forward
- A heat engine having an efficiency of 60% is used to drive a refrigerator having a coefficient of performance of 3. The energy absorbed from low temperature reservoir by the refrigerator for each kJ of energy absorbed from high- temperature source by the engine.arrow_forwardSince Lucas is an engineer familiar with thermodynamics. He decided to create his own heat engine at home to avoid paying for electricity. He created a small, makeshift heat engine for trial. The combustion of his fuel, diesel, reaches a temperature of 750°C, while waste heat is disposed to the atmosphere at 50°C.He, then connected a generator and a heat pump to the heat engine to check the amount of power being produced. Assume that the heat pump will be used to warm his room to 25°C, while the outside temperature is at 5°C. Lucas’ rooms loses 85,000 kJ/hr of heat. And, 25% of the heat engine’s power output goes to the heat pump. How much diesel (in kg) needs to be burned by the heat engine to maintain the temperature in Lucas’ room? Assume carnot heat engine and heat pump. If the natural gas has a heating value of 22,000 BTU/lb. *Round off all answers to four decimal places*arrow_forwardA refrigeration cycle is used to keep a food department at −5 ◦C in an environment at 20 ◦C. The total heat gain in the food department is estimated to be 750 kJ/h and the heat rejection in the condenser is 1250 kJ/h. Determine (a) the power input to the compressor in kW, (b) the COP of the refrigerator, and (c) the minimum power input to the compressor if a reversible refrigerator was used.arrow_forward
- A refrigerator has a coefficient of performance of 1.6. How much work in KJ must be supplied to this refrigerator for it to reject 1000 KJ of heat?arrow_forwardThermodynamics questionarrow_forwardA reversible heat engine operates between two reservoirs at temperatures 800°C and 65°C. The engine drives a reversible refrigerator which operates between reservoirs at temperatures of 65°C and – 25°C. The heat transfer to the engine is 2800 kJ and the network output of the combined engine refrigerator plant is 450 kJ. Determine the heat transfer to the refrigerant and net heat transfer to the reservoir at 65°Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License