THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.10, Problem 41P
A heat pump operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The condenser operates at 1000 kPa and the evaporator at 200 kPa. Determine this system’s COP and the rate of heat supplied to the evaporator when the compressor consumes 6 kW.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A heat pump operates on the ideal vapor-compression refrigeration cycle and uses refrigerant-134a as the working fluid. The
condenser operates at 1400 kPa and the evaporator at 140 kPa. Determine this system's COP and the rate of heat supplied to the
evaporator when the compressor consumes 7 kW.
(Take the required values from saturated refrigerant-134a tables.)
The COP of the system is
and the rate of heat supplied to the evaporator is
KM
4
Please answer step by step
An air conditioner using refrigerant-134a as the working fluid and
operating on the ideal vapor-compression refrigeration cycle is to
maintain a space at 26°C while operating its condenser at 1400 kPa.
Determine the COP of the system when a temperature difference of
2°C is allowed for the transfer of heat in the evaporator. (Take the
required values from saturated refrigerant-134a tables.)
The COP of the system is
Chapter 11 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 11.10 - Why do we study the reversed Carnot cycle even...Ch. 11.10 - Why is the reversed Carnot cycle executed within...Ch. 11.10 - A steady-flow Carnot refrigeration cycle uses...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Does the ideal vapor-compression refrigeration...Ch. 11.10 - Why is the throttling valve not replaced by an...Ch. 11.10 - In a refrigeration system, would you recommend...Ch. 11.10 - Does the area enclosed by the cycle on a T-s...Ch. 11.10 - Consider two vapor-compression refrigeration...Ch. 11.10 - It is proposed to use water instead of...
Ch. 11.10 - The COP of vapor-compression refrigeration cycles...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - An air conditioner using refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator operates on the ideal...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - A refrigerator uses refrigerant-134a as its...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 24PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - Prob. 28PCh. 11.10 - Bananas are to be cooled from 28C to 12C at a rate...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - The liquid leaving the condenser of a 100,000...Ch. 11.10 - Reconsider Prob. 1144E. What is the effect on the...Ch. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - A heat pump using refrigerant-134a as a...Ch. 11.10 - Reconsider Prob. 1148. What is the effect on the...Ch. 11.10 - Prob. 50PCh. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 54PCh. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Prob. 56PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-stage compression refrigeration system with...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Prob. 67PCh. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 70PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - An ideal gas refrigeration system operates with...Ch. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - An ideal gas refrigeration cycle uses air as the...Ch. 11.10 - Rework Prob. 1176E when the compressor isentropic...Ch. 11.10 - A gas refrigeration cycle with a pressure ratio of...Ch. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 84PCh. 11.10 - Prob. 85PCh. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - Prob. 99PCh. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 104PCh. 11.10 - Prob. 105PCh. 11.10 - Prob. 106PCh. 11.10 - Rooms with floor areas of up to 15 m2 are cooled...Ch. 11.10 - Consider a steady-flow Carnot refrigeration cycle...Ch. 11.10 - Consider an ice-producing plant that operates on...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - A refrigerator using refrigerant-134a as the...Ch. 11.10 - Prob. 117RPCh. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An aircraft on the ground is to be cooled by a gas...Ch. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Prob. 130RPCh. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 133FEPCh. 11.10 - Prob. 134FEPCh. 11.10 - Prob. 135FEPCh. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 139FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 141FEPCh. 11.10 - Prob. 142FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Condensers in these refrigerators are all_______cooled.arrow_forwardAn air conditioner using refrigant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain the cold space at 20degC while operating its condenser at 1.2 MPa. Determine the a. COP of the system when the evaporator's temperature is set at 18degC b. If the refrigerant leaves the compressor at 73degC at a rate of 4.85 kg/min, determine the rate of heat rejection to the environment (kW) c. isentropic efficiency of the compressor (%) and compressor power requirement (kW) Disregard any heat loss in the expansion valve and compressor as well as the change in potential and kinetic energy of the refrigerant in any part of the cycle.arrow_forwardA Carnot vapor refrigeration cycle uses R-134a as the working fluid The refrigerant enters the condenser as saturated vapor at 28°C and leaves as saturated liquid. The evaporator operates at a temperature of 10°C. For every kg of refrigerant flow, calculate the amount o heat absorbed in the evaporator, kJ.arrow_forward
- a) A freezer working on an ideal vapour-compression refrigeration cycle uses refrigerant R- 134a with a mass flow rate of 0.10 kg/s. The refrigerant leaves the evaporator as saturated vapour at a temperature of -8 °C. It leaves the condenser as saturated liquid at a pressure of 0.8 MPa. Determine the power required to drive the compressor. Note that the thermodynamic properties of R-134a are attached at the end of the paper. 0.8 MPa A Figure Q4 b) A freezer wall is made of a composite material with a thickness of 20 mm and a conductivity of 0.03 W/m-K. Air temperatures inside and outside the freezer are -6 °C and 20 °C, respectively. The convection coefficient is 2 W/m² K on both the inner and outer surfaces of the freezer wall. Determine the heat flux through the freezer wall. -8 Carrow_forwardConsider a 332 kJ/min refrigeration system that operates on an ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid. The refrigerant enters the compressor as saturated vapor at 140 kPa and is compressed to 800 kPa. Determine the power input to the compressor in kW.arrow_forwardThermodynamicsarrow_forward
- An ideal vapor-compression refrigeration cycle uses R-134a as the refrigerant. The refrigerant enters the evaporator at 160 kpa with a quality of 25% and leaves the compressor at 65 °C. If the compressor consumes 800W of power, determine (a) the mass flow rate of the refrigerant, (b) the condenser pressure, and (c) the COP of the refrigeratorarrow_forwardRefrigerant 134a enters the compressor of a vapor-compression refrigeration cycle at 150 kPa as a saturated vapor and leaves at 850 kPa. The refrigerant leaves the condenser as a saturated liquid. The rate of cooling provided by the system is 7kW. a. Determine the mass flow rate of R-134a and the cop of the cycle. b. If the condenser pressure is changed to 950 kPa, find the cop of the cycle.arrow_forwardAn air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 36.00°C while operating its condenser at 1600 kPa. Determine the COP of the system when a temperature difference of 4.000°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.) (Round the final answer to three decimal places.) The COP of the system isarrow_forward
- A Carnot refrigeration cycle uses refrigerant-134a as the working fluid. The refrigerant evaporates at 120 kPa and condenses at 30ᵒC. The refrigerant changes from saturated vapor to saturated liquid in the condenser as it rejects heat. Determine the heat removal (kJ/kg) from the refrigerated space.arrow_forwardPlease answer step by steparrow_forwardConsider an actual vapor-compression refrigeration cycle. R-134a enters the compressor as superheated vapor at 0.18 MPa and -10°C at a rate of 0.055 kg/s, and it leaves at 1.2 MPa and 60°C. The refrigerant is cooled in the condenser to 42°C and 1.15 MPa, and it is throttled to 0.22 MPa. Determine the rate of heat addition to the evaporator, in kW.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY