Chemistry with Access Code, Hybrid Edition
9th Edition
ISBN: 9781285188492
Author: Steven S. Zumdahl
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 39E
Interpretation Introduction
Interpretation:
The enthalpy of the solution per mole of solid Sodium Iodide to be calculated and the process to which this enthalpy change applies to be described.
Concept introduction
Hess’s law: Hess's law states that the change of enthalpy in a
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry with Access Code, Hybrid Edition
Ch. 11 - Prob. 1RQCh. 11 - Using KF as an example, write equations that refer...Ch. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Define the terms in Raoults law. Figure 10-9...Ch. 11 - In terms of Raoults law, distinguish between an...Ch. 11 - Vapor-pressure lowering is a colligative property,...Ch. 11 - What is osmotic pressure? How is osmotic pressure...Ch. 11 - Distinguish between a strong electrolyte, a weak...Ch. 11 - Prob. 10RQ
Ch. 11 - Prob. 1ALQCh. 11 - Once again, consider Fig. 10-9. Suppose instead of...Ch. 11 - Prob. 3ALQCh. 11 - Prob. 4ALQCh. 11 - You have read that adding a solute to a solvent...Ch. 11 - You drop an ice cube (made from pure water) into a...Ch. 11 - Using the phase diagram for water and Raoults law,...Ch. 11 - You and your friend are each drinking cola from...Ch. 11 - Prob. 9ALQCh. 11 - Prob. 10ALQCh. 11 - Rubbing alcohol contains 585 g isopropanol...Ch. 11 - Prob. 12SRCh. 11 - Prob. 13SRCh. 11 - Prob. 14SRCh. 11 - Calculate the sodium ion concentration when 70.0...Ch. 11 - Write equations showing the ions present after the...Ch. 11 - Rationalize the temperature dependence of the...Ch. 11 - The weak electrolyte NH3(g) does not obey Henrys...Ch. 11 - The two beakers in the sealed container...Ch. 11 - The following plot shows the vapor pressure of...Ch. 11 - When pure methanol is mixed with water, the...Ch. 11 - Prob. 22QCh. 11 - For an acid or a base, when is the normality of a...Ch. 11 - Prob. 24QCh. 11 - Prob. 25QCh. 11 - Prob. 26QCh. 11 - Explain the terms isotonic solution, crenation,...Ch. 11 - Prob. 28QCh. 11 - Prob. 29ECh. 11 - Prob. 30ECh. 11 - Common commercial acids and bases are aqueous...Ch. 11 - In lab you need to prepare at least 100 mL of each...Ch. 11 - Prob. 33ECh. 11 - Prob. 34ECh. 11 - Prob. 35ECh. 11 - Calculate the molarity and mole fraction of...Ch. 11 - Prob. 37ECh. 11 - Prob. 38ECh. 11 - Prob. 39ECh. 11 - a. Use the following data to calculate the...Ch. 11 - Although Al(OH)3 is insoluble in water, NaOH is...Ch. 11 - Prob. 42ECh. 11 - Prob. 43ECh. 11 - Prob. 44ECh. 11 - For each of the following pairs, predict which...Ch. 11 - Which ion in each of the following pairs would you...Ch. 11 - Rationalize the trend in water solubility for the...Ch. 11 - In flushing and cleaning columns used in liquid...Ch. 11 - The solubility of nitrogen in water is 8.21 104...Ch. 11 - Calculate the solubility of O2 in water at a...Ch. 11 - Glycerin, C3H8O3, is a nonvolatile liquid. What is...Ch. 11 - The vapor pressure of a solution containing 53.6 g...Ch. 11 - The normal boiling point of diethyl ether is...Ch. 11 - At a certain temperature, the vapor pressure of...Ch. 11 - A solution is made by dissolving 25.8 g urea...Ch. 11 - A solution of sodium chloride in water has a vapor...Ch. 11 - Prob. 57ECh. 11 - A solution is prepared by mixing 0.0300 mole of...Ch. 11 - What is the composition of a methanol...Ch. 11 - Benzene and toluene form an ideal solution....Ch. 11 - Which of the following will have the lowest total...Ch. 11 - Prob. 62ECh. 11 - Match the vapor pressure diagrams with the...Ch. 11 - The vapor pressures of several solutions of...Ch. 11 - A solution is prepared by dissolving 27.0 g urea,...Ch. 11 - A 2.00-g sample of a large biomolecule was...Ch. 11 - What mass of glycerin (C3H8O3), a nonelectrolyte,...Ch. 11 - The freezing point of 1-butanol is 25.50C and Kf...Ch. 11 - Prob. 69ECh. 11 - What volume of ethylene glycol (C2H6O2), a...Ch. 11 - Reserpine is a natural product isolated from the...Ch. 11 - A solution contains 3.75 g of a nonvolatile pure...Ch. 11 - a. Calculate the freezing-point depression and...Ch. 11 - Erythrocytes are red blood cells containing...Ch. 11 - Prob. 75ECh. 11 - Prob. 76ECh. 11 - Prob. 77ECh. 11 - Prob. 78ECh. 11 - Consider the following solutions: 0.010 m Na3PO4...Ch. 11 - From the following: pure water solution of...Ch. 11 - Prob. 81ECh. 11 - Prob. 82ECh. 11 - Prob. 83ECh. 11 - Consider the following representations of an ionic...Ch. 11 - Prob. 85ECh. 11 - Prob. 86ECh. 11 - Use the following data for three aqueous solutions...Ch. 11 - The freezing-point depression of a 0.091-m...Ch. 11 - Prob. 89ECh. 11 - A 0.500-g sample of a compound is dissolved in...Ch. 11 - The solubility of benzoic acid (HC7H5O2), is 0.34...Ch. 11 - Prob. 92AECh. 11 - In Exercise 96 in Chapter 8, the pressure of CO2...Ch. 11 - Explain the following on the basis of the behavior...Ch. 11 - The term proof is defined as twice the percent by...Ch. 11 - Prob. 97AECh. 11 - Prob. 98AECh. 11 - A solution is made by mixing 50.0 g acetone...Ch. 11 - Prob. 100AECh. 11 - Thyroxine, an important hormone that controls the...Ch. 11 - Prob. 102AECh. 11 - An unknown compound contains only carbon,...Ch. 11 - Prob. 104AECh. 11 - Prob. 105AECh. 11 - Prob. 106AECh. 11 - Prob. 107AECh. 11 - Prob. 108AECh. 11 - Patients undergoing an upper gastrointestinal...Ch. 11 - Prob. 110CWPCh. 11 - The lattice energy of NaCl is 786 kJ/mol, and the...Ch. 11 - For each of the following pairs, predict which...Ch. 11 - The normal boiling point of methanol is 64.7C. A...Ch. 11 - A solution is prepared by mixing 1.000 mole of...Ch. 11 - Prob. 115CWPCh. 11 - A 4.7 102 mg sample of a protein is dissolved in...Ch. 11 - A solid consists of a mixture of NaNO3 and...Ch. 11 - The vapor pressure of pure benzene is 750.0 torr...Ch. 11 - Prob. 119CPCh. 11 - Plants that thrive in salt water must have...Ch. 11 - You make 20.0 g of a sucrose (C12H22O11) and NaCl...Ch. 11 - Prob. 122CPCh. 11 - The vapor in equilibrium with a pentane-hexane...Ch. 11 - A forensic chemist is given a white solid that is...Ch. 11 - A 1.60-g sample of a mixture of naphthalene...Ch. 11 - Prob. 126CPCh. 11 - Prob. 127CPCh. 11 - You have a solution of two volatile liquids, A and...Ch. 11 - In some regions of the southwest United States,...Ch. 11 - Creatinine, C4H7N3O, is a by-product of muscle...Ch. 11 - An aqueous solution containing 0.250 mole of Q, a...Ch. 11 - Anthraquinone contains only carbon, hydrogen, and...
Knowledge Booster
Similar questions
- Water at 25 C has a density of 0.997 g/cm3. Calculate the molality and molarity of pure water at this temperature.arrow_forwardCalculate the molality of a solution made by dissolving 115.0 g ethylene glycol, HOCH2CH2OH, in 500. mL water. The density of water at this temperature is 0.978 g/mL. Calculate the molarity of the solution.arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forward
- Consider three test tubes. Tube A has pure water. Tube B has an aqueous 1.0 m solution of ethanol, C2H5OH. Tube C has an aqueous 1.0 m solution of NaCl. Which of the following statements are true? (Assume that for these solutions 1.0m=1.0M.) (a) The vapor pressure of the solvent over tube A is greater than the solvent pressure over tube B. (b) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube A. (c) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube C. (d) The boiling point of the solution in tube B is higher than the boiling point of the solution in tube C. (e) The osmotic pressure of the solution in tube B is greater than the osmotic pressure of the solution in tube C.arrow_forwardThe freezing point of 0.109 m aqueous formic acid is 0.210C. Formic acid, HCHO2, is partially dissociated according to the equation HCHO2(aq)H+(aq)+CHO2(aq) Calculate the percentage of HCHO2 molecules that are dissociated, assuming the equation for the freezing-point depression holds for the total concentration of molecules and ions in the solution.arrow_forwardA 0.109 mol/kg aqueous solution of formic acid, HCOOH, freezes at −0.210 °C. Calculate the percent dissociation of formic acid.arrow_forward
- Freezing point depression is one means of determining the molar mass of a compound. The freezing point depression constant of benzene is 5.12 C/m. a. When a 0.503 g sample of the white crystalline dimer is dissolved in 10.0 g benzene, the freezing point of benzene is decreased by 0542 C. Verify that the molar mass of the dimer is 475 g/mol when determined by freezing point depression. Assume no dissociation of the dimer occurs. b. The correct molar mass of the dimer is 487 g/mol. Explain why the dissociation equilibrium causes the freezing point depression calculation to yield a lower molar mass for the dimer.arrow_forwardConcentrated hydrochloric acid contains 1.00 mol HCl dissolved in 3.31 mol H2O. What is the mole fraction of HCl in concentrated hydrochloric acid? What is the molal concentration of HCl?arrow_forwardAn unknown compound contains only carbon, hydrogen, and oxygen. Combustion analysis of the compound gives mass percents of 31.57% C and 5.30% H. The molar mass is determined by measuring the freezing-point depression of an aqueous solution. A freezing point of 5.20C is recorded for a solution made by dissolving 10.56 g of the compound in 25.0 g water. Determine the empirical formula, molar mass, and molecular formula of the compound. Assume that the compound is a nonelectrolyte.arrow_forward
- A 12.0-g sample of a nonelectrolyte is dissolved in 80.0 g of water. The solution freezes at -1.94 C. Calculate the molar mass of the substance.arrow_forwardA forensic chemist is given a white solid that is suspected of being pure cocaine (C17H21NO4, molar mass = 303.35 g/mol). She dissolves 1.22 0.01 g of the solid in 15.60 0.01 g benzene. The freezing point is lowered by 1.32 0.04C. a. What is the molar mass of the substance? Assuming that the percent uncertainty in the calculated molar mass is the same as the percent uncertainty in the temperature change, calculate the uncertainty in the molar mass. b. Could the chemist unequivocally state that the substance is cocaine? For example, is the uncertainty small enough to distinguish cocaine from codeine (C18H21NO3, molar mass = 299.36 g/mol)? c. Assuming that the absolute uncertainties in the measurements of temperature and mass remain unchanged, how could the chemist improve the precision of her results?arrow_forwardConsider two hypothetical pure substances, AB(s) and XY(s). When equal molar amounts of these substances are placed in separate 500-mL samples of water, they undergo the following reactions: AB(s)A+(aq)+B(aq)XY(s)XY(aq) a Which solution would you expect to have the lower boiling point? Why? b Would you expect the vapor pressures of the two solutions to be equal? If not, which one would you expect to have the higher vapor pressure? c Describe a procedure that would make the two solutions have the same boiling point. d If you took 250 mL of the AB(aq) solution prepared above, would it have the same boiling point as the original solution? Be sure to explain your answer. e The container of XY(aq) is left out on the bench top for several days, which allows some of the water to evaporate from the solution. How would the melting point of this solution compare to the melting point of the original solution?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning