Concept explainers
Anthraquinone contains only carbon, hydrogen, and oxygen. When 4.80 mg anthraquinone is burned, 14.2 mg CO2 and 1.65 mg H2O are produced. The freezing point of camphor is lowered by 22.3°C when 1.32 g anthraquinone is dissolved in 11.4 g camphor. Determine the empirical and molecular formulas of anthraquinone.
Interpretation: The empirical formula and molecular formula of Anthraquinone has to be determined.
Concept Introduction:
The ratio of the elements present in a compound and not the arrangement of the atoms are called as Empirical formula
Molecular formula is the representation of sum of number of atoms and molecules, not their arrangement in structure.
Answer to Problem 132IP
The empirical formula of Anthraquinone is
The molecular formula of Anthraquinone is
Explanation of Solution
Record the data
Mass of Carbon dioxide =
Mass of Water =
Freezing point of Camphor =
Mass of Anthraquinone burned =
Mass of Anthraquinone Dissolved =
Mass of Camphor =
To calculate the mass percent of Carbon, Hydrogen and Oxygen
Atomic mass of Carbon =
Molar mass of Carbon dioxide =
Atomic mass of Hydrogen =
Molar mass of Water =
Mass of Carbon =
Mass percentage of Carbon =
=
Mass of Hydrogen =
Mass percentage of Hydrogen =
=
Mass percentage of Oxygen =
=
Mass percentage of Carbon =
Mass percentage of Water =
Mass percentage of Oxygen =
To calculate the empirical formula
Mass percentage of Carbon =
Mass percentage of Hydrogen =
Mass percentage of Oxygen =
Out of
Therefore, the empirical formula is
Record the given info
Freezing point of Camphor =
Molal freezing point depression constant =
Mass of Anthraquinone burned =
Mass of Anthraquinone Dissolved =
Mass of Camphor =
To calculate the mass of Anthraquinone (m),
Molal of Anthraquinone =
Moles of Anthraquinone =
=
Moles of Anthraquinone =
To calculate the molar mass
Moles of Anthraquinone =
Mass of Anthraquinone Dissolved =
Molar mass of Anthraquinone =
=
To determine the Molecular formula of Anthraquinone
Empirical formula mass =
Molar mass of Anthraquinone =
Molar mass of Anthraquinone is twice the empirical mass of Anthraquinone, therefore the molecular mass of Anthraquinone is
Molecular Mass of Anthraquinone =
The moles of individual elements were calculated by using the mass percentages to their molar masses. The moles of the individual elements were divided by smallest ratio of moles and approximated to determine the empirical formula. The empirical formula was found to be
The molecular mass of Anthraquinone is calculated by using the molar mass and empirical formula mass. The molecular mass of Anthraquinone was
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry with Access Code, Hybrid Edition
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Brock Biology of Microorganisms (15th Edition)
Human Anatomy & Physiology (2nd Edition)
General, Organic, and Biological Chemistry - 4th edition
Biology: Concepts and Investigations
- Which of the following would you expect to be antiaromatic? Please provide a detailed explanation.arrow_forwardNonearrow_forwardDraw a Newman projection from carbon 3 to carbon 2 in the highest energy conformation for the following molecule. What is this conformation called? What kind of strain is present? Brarrow_forward
- Which of the following dienophiles is most reactive in a Diels-Alder reaction: Please explain why the correct answer to this question is option 5. Please provide a detailed explanation.arrow_forwardWhich of the following would you expect to be aromatic? Please provide a detailed explanation.arrow_forwardDraw the enantiomer and diastereomers of the following molecule. Label each type of stereoisomers. Label each chiral center as R or S. HOarrow_forward
- Which diene and dienophile would you choose to synthesize the following compound? Please provide a detailed explanation. Please include a drawing showing the mechanism of the synthesis. Please also explain why it is the correct diene and dienophile.arrow_forwardUsing the sketcher below, draw the structure of N-ethyldecylamine. Answer: 0 ୨୫) . 始 {n [ ]t ?arrow_forwardWhich of the following would you expect to be aromatic? Please provide a detailed explanation.arrow_forward
- Identify the characteristic signals that you would expect in the diagnostic region of an IR spectrum of each of the following compounds. a. H₂N b.arrow_forwardWhat is the lowest energy chair for the following cyclohexane? ' || || a. b. " " d.arrow_forwardAnswer the following questions using the below figure: Potential Energy ри Reaction Progress a. How many transition states occur in this reaction? b. How many intermediates occur in this reaction? c. Is this reaction spontaneous or nonspontaneous? d. Does this reaction have a positive or negative AG? e. Label the activation energy(ies).arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning