The amount of Sodium chloride required to prepare 1 .0 L aqueous solution of Sodium chloride has to be calculated. Concept Introduction: When a semi-permeable membrane, separates a solution and pure solvent. The solvent molecules are passed through the semi permeable membrane. There is gradual increase in the volume of solution with a decrease in volume of the solvent with respect to time. The flow of solvent through a semi-permeable membrane into the solution is called as osmosis. By the time system reaches equilibrium, the changes in the liquid level stops. There is a higher hydrostatic pressure on the solution than compared to that of the pure solvent because there is variation in the liquid levels at this point. The excess pressure on the solution is called osmotic pressure. The osmotic pressure of solution is calculated by using, π =MRT Here, π = osmotic pressure(in atm) M=molarity of solution(in M) R= Gas Law constant L atm T=Temperature(in K)
The amount of Sodium chloride required to prepare 1 .0 L aqueous solution of Sodium chloride has to be calculated. Concept Introduction: When a semi-permeable membrane, separates a solution and pure solvent. The solvent molecules are passed through the semi permeable membrane. There is gradual increase in the volume of solution with a decrease in volume of the solvent with respect to time. The flow of solvent through a semi-permeable membrane into the solution is called as osmosis. By the time system reaches equilibrium, the changes in the liquid level stops. There is a higher hydrostatic pressure on the solution than compared to that of the pure solvent because there is variation in the liquid levels at this point. The excess pressure on the solution is called osmotic pressure. The osmotic pressure of solution is calculated by using, π =MRT Here, π = osmotic pressure(in atm) M=molarity of solution(in M) R= Gas Law constant L atm T=Temperature(in K)
Solution Summary: The author explains the amount of Sodium chloride required to prepare aqueous solution. The flow of solvent through the semi-permeable membrane is called osmosis.
Interpretation: The amount of Sodium chloride required to prepare
1.0L aqueous solution of Sodium chloride has to be calculated.
Concept Introduction:
When a semi-permeable membrane, separates a solution and pure solvent. The solvent molecules are passed through the semi permeable membrane. There is gradual increase in the volume of solution with a decrease in volume of the solvent with respect to time. The flow of solvent through a semi-permeable membrane into the solution is called as osmosis. By the time system reaches equilibrium, the changes in the liquid level stops. There is a higher hydrostatic pressure on the solution than compared to that of the pure solvent because there is variation in the liquid levels at this point. The excess pressure on the solution is called osmotic pressure.
The osmotic pressure of solution is calculated by using,
You have now performed a liquid-liquid extraction protocol in Experiment 4. In doing so, you
manipulated and exploited the acid-base chemistry of one or more of the compounds in your
mixture to facilitate their separation into different phases. The key to understanding how liquid-
liquid extractions work is by knowing which layer a compound is in, and in what protonation state.
The following liquid-liquid extraction is different from the one you performed in Experiment
4, but it uses the same type of logic. Your task is to show how to separate apart Compound
A and Compound B.
. Complete the following flowchart of a liquid-liquid extraction. Handwritten work is
encouraged.
•
Draw by hand (neatly) only the appropriate organic compound(s) in the boxes.
.
Specify the reagent(s)/chemicals (name is fine) and concentration as required in Boxes 4
and 5.
•
Box 7a requires the solvent (name is fine).
•
Box 7b requires one inorganic compound.
• You can neatly complete this assignment by hand and…