
Glencoe Math Accelerated, Student Edition
1st Edition
ISBN: 9780076637980
Author: McGraw-Hill Glencoe
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 33CR
To determine
To find: How long are the sides of the smaller Square.
Expert Solution & Answer

Answer to Problem 33CR
Lengths of smaller square is
Explanation of Solution
Given information:
Sides of square are
Scale factor
Given
Sides of square are
Scale factor
Multiply each dimension of square by the scale factor of
Dimensions of smaller square is
Therefore,
Lengths of smaller square is
Chapter 11 Solutions
Glencoe Math Accelerated, Student Edition
Ch. 11.1 - Prob. 1GPCh. 11.1 - Prob. 2GPCh. 11.1 - Prob. 3GPCh. 11.1 - Prob. 4GPCh. 11.1 - Prob. 5GPCh. 11.1 - Prob. 6GPCh. 11.1 - Prob. 7GPCh. 11.1 - Prob. 8GPCh. 11.1 - Prob. 9GPCh. 11.1 - Prob. 10GP
Ch. 11.1 - Prob. 11IPCh. 11.1 - Prob. 12IPCh. 11.1 - Prob. 13IPCh. 11.1 - Prob. 14IPCh. 11.1 - Prob. 15IPCh. 11.1 - Prob. 16IPCh. 11.1 - Prob. 17IPCh. 11.1 - Prob. 18IPCh. 11.1 - Prob. 19IPCh. 11.1 - Prob. 20IPCh. 11.1 - Prob. 21IPCh. 11.1 - Prob. 22IPCh. 11.1 - Prob. 23IPCh. 11.1 - Prob. 24IPCh. 11.1 - Prob. 25IPCh. 11.1 - Prob. 26IPCh. 11.1 - Prob. 27IPCh. 11.1 - Prob. 28IPCh. 11.1 - Prob. 29IPCh. 11.1 - Prob. 30IPCh. 11.1 - Prob. 31IPCh. 11.1 - Prob. 32IPCh. 11.1 - Prob. 33IPCh. 11.1 - Prob. 34IPCh. 11.1 - Prob. 35HPCh. 11.1 - Prob. 36HPCh. 11.1 - Prob. 37HPCh. 11.1 - Prob. 38HPCh. 11.1 - Prob. 39STPCh. 11.1 - Prob. 40STPCh. 11.1 - Prob. 41STPCh. 11.1 - Prob. 42STPCh. 11.1 - Prob. 43CCRCh. 11.1 - Prob. 44CCRCh. 11.1 - Prob. 45CCRCh. 11.1 - Prob. 46CCRCh. 11.1 - Prob. 47CCRCh. 11.1 - Prob. 48CCRCh. 11.1 - Prob. 49CCRCh. 11.1 - Prob. 50CCRCh. 11.1 - Prob. 51CCRCh. 11.1 - Prob. 52CCRCh. 11.1 - Prob. 53CCRCh. 11.1 - Prob. 54CCRCh. 11.1 - Prob. 55CCRCh. 11.1 - Prob. 56CCRCh. 11.1 - Prob. 57CCRCh. 11.1 - Prob. 58CCRCh. 11.2 - Prob. 1GPCh. 11.2 - Prob. 2GPCh. 11.2 - Prob. 3GPCh. 11.2 - Prob. 4GPCh. 11.2 - Prob. 5GPCh. 11.2 - Prob. 6IPCh. 11.2 - Prob. 7IPCh. 11.2 - Prob. 8IPCh. 11.2 - Prob. 9IPCh. 11.2 - Prob. 10IPCh. 11.2 - Prob. 11IPCh. 11.2 - Prob. 12IPCh. 11.2 - Prob. 13IPCh. 11.2 - Prob. 14IPCh. 11.2 - Prob. 15IPCh. 11.2 - Prob. 16IPCh. 11.2 - Prob. 17IPCh. 11.2 - Prob. 18IPCh. 11.2 - Prob. 19IPCh. 11.2 - Prob. 20IPCh. 11.2 - Prob. 21IPCh. 11.2 - Prob. 22IPCh. 11.2 - Prob. 23IPCh. 11.2 - Prob. 24IPCh. 11.2 - Prob. 25IPCh. 11.2 - Prob. 26IPCh. 11.2 - Prob. 27IPCh. 11.2 - Prob. 28HPCh. 11.2 - Prob. 29HPCh. 11.2 - Prob. 30HPCh. 11.2 - Prob. 31HPCh. 11.2 - Prob. 32HPCh. 11.2 - Prob. 33STPCh. 11.2 - Prob. 34STPCh. 11.2 - Prob. 35STPCh. 11.2 - Prob. 36STPCh. 11.2 - Prob. 37CCRCh. 11.2 - Prob. 38CCRCh. 11.2 - Prob. 39CCRCh. 11.2 - Prob. 40CCRCh. 11.2 - Prob. 41CCRCh. 11.2 - Prob. 42CCRCh. 11.2 - Prob. 43CCRCh. 11.2 - Prob. 44CCRCh. 11.2 - Prob. 45CCRCh. 11.2 - Prob. 46CCRCh. 11.2 - Prob. 47CCRCh. 11.2 - Prob. 48CCRCh. 11.2 - Prob. 49CCRCh. 11.2 - Prob. 50CCRCh. 11.3 - Prob. 1GPCh. 11.3 - Prob. 2GPCh. 11.3 - Prob. 3GPCh. 11.3 - Prob. 4GPCh. 11.3 - Prob. 5GPCh. 11.3 - Prob. 6GPCh. 11.3 - Prob. 7GPCh. 11.3 - Prob. 8IPCh. 11.3 - Prob. 9IPCh. 11.3 - Prob. 10IPCh. 11.3 - Prob. 11IPCh. 11.3 - Prob. 12IPCh. 11.3 - Prob. 13IPCh. 11.3 - Prob. 14IPCh. 11.3 - Prob. 15IPCh. 11.3 - Prob. 16IPCh. 11.3 - Prob. 17IPCh. 11.3 - Prob. 18IPCh. 11.3 - Prob. 19IPCh. 11.3 - Prob. 20IPCh. 11.3 - Prob. 21IPCh. 11.3 - Prob. 22IPCh. 11.3 - Prob. 23IPCh. 11.3 - Prob. 24IPCh. 11.3 - Prob. 25IPCh. 11.3 - Prob. 26IPCh. 11.3 - Prob. 27IPCh. 11.3 - Prob. 28IPCh. 11.3 - Prob. 29IPCh. 11.3 - Prob. 30IPCh. 11.3 - Prob. 31IPCh. 11.3 - Prob. 32IPCh. 11.3 - Prob. 33IPCh. 11.3 - Prob. 34IPCh. 11.3 - Prob. 35IPCh. 11.3 - Prob. 36HPCh. 11.3 - Prob. 37HPCh. 11.3 - Prob. 38HPCh. 11.3 - Prob. 39HPCh. 11.3 - Prob. 40HPCh. 11.3 - Prob. 41STPCh. 11.3 - Prob. 42STPCh. 11.3 - Prob. 43STPCh. 11.3 - Prob. 44STPCh. 11.3 - Prob. 45CCRCh. 11.3 - Prob. 46CCRCh. 11.3 - Prob. 47CCRCh. 11.3 - Prob. 48CCRCh. 11.3 - Prob. 49CCRCh. 11.3 - Prob. 50CCRCh. 11.3 - Prob. 51CCRCh. 11.3 - Prob. 52CCRCh. 11.3 - Prob. 53CCRCh. 11.3 - Prob. 54CCRCh. 11.3 - Prob. 55CCRCh. 11.3 - Prob. 56CCRCh. 11.4 - Prob. 1GPCh. 11.4 - Prob. 2GPCh. 11.4 - Prob. 3IPCh. 11.4 - Prob. 4IPCh. 11.4 - Prob. 5IPCh. 11.4 - Prob. 6IPCh. 11.4 - Prob. 7IPCh. 11.4 - Prob. 8IPCh. 11.4 - Prob. 9IPCh. 11.4 - Prob. 10IPCh. 11.4 - Prob. 11IPCh. 11.4 - Prob. 12IPCh. 11.4 - Prob. 13IPCh. 11.4 - Prob. 14IPCh. 11.4 - Prob. 15IPCh. 11.4 - Prob. 16IPCh. 11.4 - Prob. 17IPCh. 11.4 - Prob. 18HPCh. 11.4 - Prob. 19HPCh. 11.4 - Prob. 20HPCh. 11.4 - Prob. 21HPCh. 11.4 - Prob. 22HPCh. 11.4 - Prob. 23STPCh. 11.4 - Prob. 24STPCh. 11.4 - Prob. 25STPCh. 11.4 - Prob. 26STPCh. 11.4 - Prob. 27CCRCh. 11.4 - Prob. 28CCRCh. 11.4 - Prob. 29CCRCh. 11.4 - Prob. 30CCRCh. 11.4 - Prob. 31CCRCh. 11.4 - Prob. 32CCRCh. 11.4 - Prob. 33CCRCh. 11.4 - Prob. 34CCRCh. 11.4 - Prob. 35CCRCh. 11.4 - Prob. 36CCRCh. 11.4 - Prob. 37CCRCh. 11.4 - Prob. 38CCRCh. 11.4 - Prob. 39CCRCh. 11.4 - Prob. 40CCRCh. 11.5 - Prob. 1GPCh. 11.5 - Prob. 2GPCh. 11.5 - Prob. 3GPCh. 11.5 - Prob. 4GPCh. 11.5 - Prob. 5IPCh. 11.5 - Prob. 6IPCh. 11.5 - Prob. 7IPCh. 11.5 - Prob. 8IPCh. 11.5 - Prob. 9IPCh. 11.5 - Prob. 10IPCh. 11.5 - Prob. 11IPCh. 11.5 - Prob. 12IPCh. 11.5 - Prob. 13IPCh. 11.5 - Prob. 14IPCh. 11.5 - Prob. 15IPCh. 11.5 - Prob. 16IPCh. 11.5 - Prob. 17HPCh. 11.5 - Prob. 18HPCh. 11.5 - Prob. 19HPCh. 11.5 - Prob. 20HPCh. 11.5 - Prob. 21HPCh. 11.5 - Prob. 22STPCh. 11.5 - Prob. 23STPCh. 11.5 - Prob. 24STPCh. 11.5 - Prob. 25STPCh. 11.5 - Prob. 26CCRCh. 11.5 - Prob. 27CCRCh. 11.5 - Prob. 28CCRCh. 11.5 - Prob. 29CCRCh. 11.5 - Prob. 30CCRCh. 11.5 - Prob. 31CCRCh. 11.5 - Prob. 32CCRCh. 11.5 - Prob. 33CCRCh. 11.5 - Prob. 34CCRCh. 11.5 - Prob. 35CCRCh. 11.5 - Prob. 36CCRCh. 11.5 - Prob. 37CCRCh. 11.5 - Prob. 38CCRCh. 11.5 - Prob. 39CCRCh. 11.6 - Prob. 1GPCh. 11.6 - Prob. 2GPCh. 11.6 - Prob. 3GPCh. 11.6 - Prob. 4IPCh. 11.6 - Prob. 5IPCh. 11.6 - Prob. 6IPCh. 11.6 - Prob. 7IPCh. 11.6 - Prob. 8IPCh. 11.6 - Prob. 9IPCh. 11.6 - Prob. 10IPCh. 11.6 - Prob. 11IPCh. 11.6 - Prob. 12IPCh. 11.6 - Prob. 13HPCh. 11.6 - Prob. 14HPCh. 11.6 - Prob. 15HPCh. 11.6 - Prob. 16HPCh. 11.6 - Prob. 17STPCh. 11.6 - Prob. 18STPCh. 11.6 - Prob. 19CCRCh. 11.6 - Prob. 20CCRCh. 11.6 - Prob. 21CCRCh. 11.6 - Prob. 22CCRCh. 11.6 - Prob. 23CCRCh. 11.6 - Prob. 24CCRCh. 11.6 - Prob. 25CCRCh. 11.7 - Prob. 1GPCh. 11.7 - Prob. 2GPCh. 11.7 - Prob. 3GPCh. 11.7 - Prob. 4GPCh. 11.7 - Prob. 5GPCh. 11.7 - Prob. 6IPCh. 11.7 - Prob. 7IPCh. 11.7 - Prob. 8IPCh. 11.7 - Prob. 9IPCh. 11.7 - Prob. 10IPCh. 11.7 - Prob. 11IPCh. 11.7 - Prob. 12IPCh. 11.7 - Prob. 13IPCh. 11.7 - Prob. 14IPCh. 11.7 - Prob. 15IPCh. 11.7 - Prob. 16IPCh. 11.7 - Prob. 17IPCh. 11.7 - Prob. 18IPCh. 11.7 - Prob. 19IPCh. 11.7 - Prob. 20HPCh. 11.7 - Prob. 21HPCh. 11.7 - Prob. 22HPCh. 11.7 - Prob. 23HPCh. 11.7 - Prob. 24HPCh. 11.7 - Prob. 25HPCh. 11.7 - Prob. 26STPCh. 11.7 - Prob. 27STPCh. 11.7 - Prob. 28STPCh. 11.7 - Prob. 29STPCh. 11.7 - Prob. 30CCRCh. 11.7 - Prob. 31CCRCh. 11.7 - Prob. 32CCRCh. 11.7 - Prob. 33CCRCh. 11.7 - Prob. 34CCRCh. 11.7 - Prob. 35CCRCh. 11.8 - Prob. 1GPCh. 11.8 - Prob. 2GPCh. 11.8 - Prob. 3GPCh. 11.8 - Prob. 4GPCh. 11.8 - Prob. 5IPCh. 11.8 - Prob. 6IPCh. 11.8 - Prob. 7IPCh. 11.8 - Prob. 8IPCh. 11.8 - Prob. 9IPCh. 11.8 - Prob. 10IPCh. 11.8 - Prob. 11IPCh. 11.8 - Prob. 12IPCh. 11.8 - Prob. 13IPCh. 11.8 - Prob. 14IPCh. 11.8 - Prob. 15IPCh. 11.8 - Prob. 16IPCh. 11.8 - Prob. 17HPCh. 11.8 - Prob. 18HPCh. 11.8 - Prob. 19HPCh. 11.8 - Prob. 20HPCh. 11.8 - Prob. 21STPCh. 11.8 - Prob. 22STPCh. 11.8 - Prob. 23STPCh. 11.8 - Prob. 24STPCh. 11.8 - Prob. 25CCRCh. 11.8 - Prob. 26CCRCh. 11.8 - Prob. 27CCRCh. 11.8 - Prob. 28CCRCh. 11.8 - Prob. 29CCRCh. 11.8 - Prob. 30CCRCh. 11.8 - Prob. 31CCRCh. 11.8 - Prob. 32CCRCh. 11.8 - Prob. 33CCRCh. 11.8 - Prob. 34CCRCh. 11.8 - Prob. 35CCRCh. 11 - Prob. 1CRCh. 11 - Prob. 2CRCh. 11 - Prob. 3CRCh. 11 - Prob. 4CRCh. 11 - Prob. 5CRCh. 11 - Prob. 6CRCh. 11 - Prob. 7CRCh. 11 - Prob. 8CRCh. 11 - Prob. 9CRCh. 11 - Prob. 10CRCh. 11 - Prob. 11CRCh. 11 - Prob. 12CRCh. 11 - Prob. 13CRCh. 11 - Prob. 14CRCh. 11 - Prob. 15CRCh. 11 - Prob. 16CRCh. 11 - Prob. 17CRCh. 11 - Prob. 18CRCh. 11 - Prob. 19CRCh. 11 - Prob. 20CRCh. 11 - Prob. 21CRCh. 11 - Prob. 22CRCh. 11 - Prob. 23CRCh. 11 - Prob. 24CRCh. 11 - Prob. 25CRCh. 11 - Prob. 26CRCh. 11 - Prob. 27CRCh. 11 - Prob. 28CRCh. 11 - Prob. 29CRCh. 11 - Prob. 30CRCh. 11 - Prob. 31CRCh. 11 - Prob. 32CRCh. 11 - Prob. 33CRCh. 11 - Prob. 34CR
Additional Math Textbook Solutions
Find more solutions based on key concepts
Snow Depth (Example 3) Eric wants to go skiing tomorrow, but only if there are 3 inches or more of new snow. Ac...
Introductory Statistics
The solution of the given inequality
Pre-Algebra Student Edition
At what points are the functions in Exercise continuous?
University Calculus: Early Transcendentals (4th Edition)
1. combination of numbers, variables, and operation symbols is called an algebraic______.
Algebra and Trigonometry (6th Edition)
CHECK POINT I Let p and q represent the following statements: p : 3 + 5 = 8 q : 2 × 7 = 20. Determine the truth...
Thinking Mathematically (6th Edition)
TRY IT YOURSELF 1
Find the mean of the points scored by the 51 winning teams listed on page 39.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 3:59 m s ☑ D'Aniello Boutique | Fashion VOLTE danielloboutique.it/asia SUBSCRIBE NOW: 10% OFF TO USE ANYTIME YOU WANT d'aniello NEW IN WOMEN NEW IN MEN WINTER SALE: 50% OFF on FW24 SHOP WOMEN SHOP MENarrow_forwardJOB UPDATE EMERSON GRAD ENGINEER (FRESHERS) SOFTWARE ENGG NEW RELIC BROWSERSTACK (FRESHERS) SOFTWARE ENGG FULL STACK DATA ENGINEER GENPACT + PYTHON CARS24 WORK FROM HOME #vinkjobs TELE PERFORMANCE Vinkjobs.com CUSTOMER SUPPORT Search "Vinkjobs.com" on Googlearrow_forwarddo question 2 pleasearrow_forward
- question 10 pleasearrow_forward00 (a) Starting with the geometric series Σ X^, find the sum of the series n = 0 00 Σηχη - 1, |x| < 1. n = 1 (b) Find the sum of each of the following series. 00 Σnx", n = 1 |x| < 1 (ii) n = 1 sin (c) Find the sum of each of the following series. (i) 00 Σn(n-1)x^, |x| <1 n = 2 (ii) 00 n = 2 n² - n 4n (iii) M8 n = 1 շոarrow_forward(a) Use differentiation to find a power series representation for 1 f(x) = (4 + x)²* f(x) = 00 Σ n = 0 What is the radius of convergence, R? R = (b) Use part (a) to find a power series for f(x) = 1 (4 + x)³° f(x) = 00 Σ n = 0 What is the radius of convergence, R? R = (c) Use part (b) to find a power series for f(x) = x² (4 + x)³* 00 f(x) = Σ n = 2 What is the radius of convergence, R? R = Need Help? Read It Watch It SUBMIT ANSWERarrow_forward
- answer for question 4 pleasearrow_forward(3) (20 points) Let F(x, y, z) = (y, z, x²z). Define E = {(x, y, z) | x² + y² ≤ z ≤ 1, x ≤ 0}. (a) (2 points) Calculate the divergence V. F. (b) (4 points) Let D = {(x, y) | x² + y² ≤ 1, x ≤ 0} Without calculation, show that the triple integral √ (V · F) dV = √ 2²(1. = x²(1 − x² - y²) dA. Earrow_forward(2) (22 points) Let F(x, y, z) = (x sin y, cos y, ―xy). (a) (2 points) Calculate V. F. (b) (6 points) Given a vector field is everywhere defined with V G₁(x, y, z) = * G2(x, y, z) = − G3(x, y, z) = 0. 0 0 F(x, y, z) = (F₁(x, y, z), F₂(x, y, z), F(x, y, z)) that F = 0, let G = (G1, G2, G3) where F₂(x, y, y, t) dt - √ F³(x, t, 0) dt, * F1(x, y, t) dt, t) dt - √ F Calculate G for the vector field F(x, y, z) = (x sin y, cos y, -xy).arrow_forward
- Evaluate the following integral over the Region R. (Answer accurate to 2 decimal places). √ √(x + y) A R R = {(x, y) | 25 < x² + y² ≤ 36, x < 0} Hint: The integral and Region is defined in rectangular coordinates.arrow_forwardFind the volume of the solid that lies under the paraboloid z = 81 - x² - y² and within the cylinder (x − 1)² + y² = 1. A plot of an example of a similar solid is shown below. (Answer accurate to 2 decimal places). Volume using Double Integral Paraboloid & Cylinder -3 Hint: The integral and region is defined in polar coordinates.arrow_forwardEvaluate the following integral over the Region R. (Answer accurate to 2 decimal places). √4(1–2² 4(1 - x² - y²) dA R 3 R = {(r,0) | 0 ≤ r≤ 2,0π ≤0≤¼˜}. Hint: The integral is defined in rectangular coordinates. The Region is defined in polar coordinates.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Problems on Area and Circumference of Circle| Basics of Circle| Questions on Circle||BrainPanthers; Author: Brain Panthers;https://www.youtube.com/watch?v=RcNEL9OzcC0;License: Standard YouTube License, CC-BY