In a solution at a constant H+ concentration, iodide ions react with hydrogen peroxide to produce iodine.
Â
(a) What is rate expression for the reaction?
(b) Calculate k
(c) What is the rate of the reaction when 25.0 mL of a 0.100 M solution of KI is added to 25.0 mL of a 10.0% by mass solution of
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry: Principles and Reactions
- Which reaction mechanism assumptions are unimportant in describing simple ionic reactions between cations and anions? Why?arrow_forwardThe rate constant, k, at 25 C is 0.27/h for the reaction Pt(NH3)2Cl2(aq) + H2O() [Pt(NH3)2(H2O)Cl]+(aq) + Cl(aq) and the rate equation is Reaction rate = k[Pt(NH3)2C12] Calculate the rate of reaction when the concentration of Pt(NH3)2Cl2 is 0.020 M.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward
- The element Co exists in two oxidation states, Co(II) and Co(III), and the ions form many complexes. The rate at which one of the complexes of Co(III) was reduced by Fe(II) in water was measured. Determine the activation energy of the reaction from the following data: T(K) k (s-1) 293 0.054 298 0.100arrow_forwardDiethylhydrazine reacts with iodine according to the following equation: Â (C2H5)2(NH)2(l)+I2(aq)(C2H5)2N2+2HI(aq)The rate of the reaction is followed by monitoring the disappearance of the purple color due to iodine. The following data are obtained at a certain temperature. (a) What is the order of the reaction with respect to diethylhydrazine, iodine, and overall? (b) Write the rate expression of the reaction. (c) Calculate k for the reaction. (d) What must [(C2H5)2] be so that the rate of the reaction is 5.00104mol/Lh when [ I2 ]=0.500M?arrow_forwardThe following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forward
- When boron trifluoride reacts with ammonia, the following reaction occurs: BF3(g)+NH3(g)BF3NH3(g)The following data are obtained at a particular temperature: (a) What is the order of the reaction with respect to BF3, NH3, and overall? (b) Write the rate expression for the reaction. (c) Calculate k for the reaction. (d) When [ BF3 ]=0.533M and NH3=0.300M, what is the rate of the reaction at the temperature of the experiment?arrow_forward7-43 (Chemical Connections 7A and 7B) Why is a high fever dangerous? Why is a low body temperature dangerous?arrow_forwardYou are studying a binding reaction where 2 molecules of A come together to form an AA dimer. The rate of binding is slightly less than diffusion controlled with a rate constant of 2 x 106 M-¹ s-¹. The rate at which the complex dissociates is 0.1 s-¹. (a) Calculate Kp for this reaction. (b) Assuming that you start with 1 mM A, calculate the first two half-lives for the reaction. In this latter calculation, assume that the rate of dissociation is 0.arrow_forward
- A particular second-order reaction has a rate constant of 2.4 x 10–6 M–1 s–1 at 575 K and 6.0 x 10–5 M–1 s–1 at 630 K. (a) Calculate the activation energy of the reaction. (b) What is the value of the rate constant at 25°C?arrow_forwardHydrogen gas and iodine vapor react as H2(g)+ I2(g) → 2HI(g). The activation energy of the formation of HI is 1.03x102 kJ whereas the activation energy of the dissociation of HI is 1.77x102 (a). Calculate the enthalpy of reaction for the reaction. (b). Sketch the energy profile for the reaction between hydrogen and iodine. Platinum acts as a catalyst for the reaction above. Sketch the energy profile for the catalyzed reaction in the energy profile. (c). Name the type of catalysis involved and explain qualitatively how the presence of platinum catalyzes the reaction above.arrow_forward(iv) The activation energy, Ea, and pre-exponential factor, A, for the decomposition of N2O5: N2O5→ 2 NO2 + ½ O2 are: E = 102.2 kJ mol-1 and A = 2.81 x 1013 s-1. (a) Using these data calculate the rate constant of the reaction at 300 K. (b) Assuming the reaction is first order calculate the rate of the reaction, at 300 K, when the concentration of N2O5 is 0.015 mol L-1.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning