
The hypothetical reaction
min when [X] is 0.150 M and [Y] is 0.0800 M.
(a) What is the value for k?
(b) At what concentration of [Y] is the rate 0.00948 mol/L
min and [X] is 0.0441 M?
(c) At what concentration of [X] is the rate 0.0124 mol/L
min and

(a)
Interpretation:
To determine the value of rate constant for the given reaction.
Concept introduction:
Rate of a chemical reaction: It tells us about the speed at which the reactants are converted into products.
Mathematically, rate of reaction is directly proportional to the product of concentration of each reactant raised to the power equal to their respective stoichiometric coefficients.
Let’s say we have a reaction:
Answer to Problem 22QAP
Rate constant for the given reaction is 4.05 L/mol.min
Explanation of Solution
Here the chemical reaction is:
Since the order of reaction with respect to X and Y is first order and second order respectively. Thus, rate law equation will look like:
Here we have:
[X] = 0.150 M
[Y] = 0.0800 M
Rate of reaction = 0.00389 mol/L.min
Plugging value of rate of reaction in equation 1 to get the value of rate constant as:
Hence, the rate constant for the given reaction is 4.05 L/mol.min

(b)
Interpretation:
To determine the concentration of Y when rate of reaction is 0.00948 mol/L.min and concentration of X is 0.0441 M.
Concept Introduction:
Rate of a chemical reaction: It tells us about the speed at which the reactants are converted into products.
Mathematically, rate of reaction is directly proportional to the product of concentration of each reactant raised to the power equal to their respective stoichiometric coefficients.
Let’s say we have a reaction:
Answer to Problem 22QAP
The concentration of Y is 0.230 mol/L.
Explanation of Solution
Here the chemical reaction is:
Since the order of reaction with respect to ICl and H2 is first order and second order respectively. Thus, rate law equation will look like:
Here we have:
[X] = 0.0441 M
Rate of reaction = 0.00948 mol/L.min
Rate constant = 4.05 L/mol.s
Plugging value of rate of reaction in equation 1 to get the value of rate constant as:
Hence, the concentration of Y is 0.230 mol/L.

(c)
Interpretation:
To determine the concentration of X when rate of reaction is 0.0124 mol/L.min and concentration of Y is 2 times the concentration X i.e., [Y] = 2×[X].
Concept Introduction:
Rate of a chemical reaction: It tells us about the speed at which the reactants are converted into products.
Mathematically, rate of reaction is directly proportional to the product of concentration of each reactant raised to the power equal to their respective stoichiometric coefficients.
Let’s say we have a reaction:
Answer to Problem 22QAP
The concentration of X is
Explanation of Solution
Here the chemical reaction is:
Since the order of reaction with respect to ICl and H2 is first order and second order respectively. Thus, rate law equation will look like:
Here we have:
[Y] = 2[X]
Rate of reaction = 0.0124 mol/L.min
Rate constant = 4.05 L/mol.min
Plugging value of rate of reaction in equation 1 to get the value of rate constant as:
Hence, the concentration of X is
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry: Principles and Reactions
- helparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forwardQUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forward
- pressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward5.arrow_forward
- 6.arrow_forward0/5 alekscgi/x/sl.exe/1o_u-IgNglkr7j8P3jH-IQs_pBaHhvlTCeeBZbufuBYTi0Hz7m7D3ZcSLEFovsXaorzoFtUs | AbtAURtkqzol 1HRAS286, O States of Matter Sketching a described thermodynamic change on a phase diagram The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 3 pressure (atm) + 0- 0 5+ 200 temperature (K) 400 Explanation Check X 0+ F3 F4 F5 F6 F7 S 2025 McGraw Hill LLC All Rights Reserved. Terms of Use Privacy Center Accessibility Q Search LUCR + F8 F9 F10 F11 F12 * % & ( 5 6 7 8 9 Y'S Dele Insert PrtSc + Backsarrow_forward5.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





