(a)
Interpretation:
To determine the test tube which has the smallest rate.
Concept introduction:
Rate of a
Mathematically,
Let’s say we have a reaction:
(b)
Interpretation:
To determine the change in the value of rate constant and activation energy when temperature is increased.
Concept introduction:
Relation between rate constant and temperature:
Activation energy is the amount of energy required to reach the transition state. It is independent of temperature. Catalyst are generally added to chemical reaction to decrease activation to make reaction faster or even slower.
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Chemistry: Principles and Reactions
- Consider the following energy diagram (not to scale) for the reaction. 2CH3(g)C2H6(g) (a) What is the activation energy of the forward reaction? (b) At what point would 2CH3 (g) appear? (c) What is H for the reaction? (d) What is the activation energy of the reverse reaction? (e) At what point would C2H6 certainly be found? (f) What is any species at point C called?arrow_forward. Account for the increase in reaction rate brought about by a catalyst.arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forward
- If a textbook defined a catalyst as "a substance that increases the rate of a reaction," would that definition be adequate?arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardFor the following reaction profile, indicate a. the positions of reactants and products. b. the activation energy. c. E for the reaction.arrow_forward
- How do chemists envision reactions taking place in terms of the collision model for reactions? Give an example of a simple reaction and how you might envision the reaction’s taking place by means of a collision between the molecules.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forwardCan a reaction mechanism ever be proven correct? Can it be proven incorrect?arrow_forward
- For the reaction 2N2O(g)2N2(g)+O2(g) the rate constant is 0.066 L/mol min at 565C and 22.8 L/mol min at 728C. (a) What is the activation energy of the reaction? (b) What is k at 485C? (c) At what temperature is k, the rate constant, equal to 11.6 L/mol min?arrow_forwardDiethylhydrazine reacts with iodine according to the following equation: Â (C2H5)2(NH)2(l)+I2(aq)(C2H5)2N2+2HI(aq)The rate of the reaction is followed by monitoring the disappearance of the purple color due to iodine. The following data are obtained at a certain temperature. (a) What is the order of the reaction with respect to diethylhydrazine, iodine, and overall? (b) Write the rate expression of the reaction. (c) Calculate k for the reaction. (d) What must [(C2H5)2] be so that the rate of the reaction is 5.00104mol/Lh when [ I2 ]=0.500M?arrow_forwardAzomethane decomposes into nitrogen and ethane at high temperatures according to the following equation: (CH3)2N2(g)N2(g)+C2H6(g)The rate of the reaction is followed by monitoring the disappearance of the purple color due to iodine. The following data are obtained at a certain temperature. (a) By plotting the data, show that the reaction is first-order. (b) From the graph, determine k. (c) Using k, find the time (in hours) that it takes to decrease the concentration to 0.100 M. (d) Calculate the rate of the reaction when [ (CH3)2N2 ]=0.415M.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning