Ammonium cyanate,
The rearrangement is a second-order reaction. It takes 11.6 h for the concentration of
(a) What is k for the reaction?
(b) What is the half-life of the reaction when
(c) How long will it take to rearrange 39% of a 0.450 M solution?
(d) How fast is a 0.839 M solution being changed to urea?
Trending nowThis is a popular solution!
Chapter 11 Solutions
Chemistry: Principles and Reactions
- The decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardThe following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forward
- Sucrose, a sugar, decomposes in acid solution to give glucose and fructose. The reaction is first-order in sucrose, and the rate constant at 25 C is k = 0.21 h1. If the initial concentration of sucrose is 0.010 mol/L, what is its concentration after 5.0 h?arrow_forwardNitrogen monoxide is reduced by hydrogen to give nitrogen and water: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) One possible mechanism for this reaction involves the following reactions: 2 NO(g) N2O2(g) N2O2(g) + H2(g) N2O(g) + H2O(g) N2O(g) + H2(g) N2(g) + H2O(g) What is the molecularity of each of the three steps? What is the rate equation for the third step? Identify the intermediates in this reaction; how many different intermediates are there? Show that the sum of these elementary steps gives the equation for the overall reaction.arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forward
- The decomposition of azomethane, (CH3)2N2, to nitrogen and ethane gases is a first-order reaction, (CH3)2N2(g)N2(g)+C2H6(g). At a certain temperature, a 29-mg sample of azomethane is reduced to 12 mg in 1.4 s. (a) What is the rate constant k for the decomposition at that temperature? (b) What is the half-life of the decomposition? (c) How long will it take to decompose 78% of the azomethane?arrow_forwardRegular ?ights of supersonic aircraft in the stratosphere ale of concern because such aircraft produce nitric oxide, NO, as a byproduct in the exhaust of their engines. Nitric oxide reacts with ozone, and it has been suggested that this could contribute to depletion of the ozone layer. The reaction NO+O3NO2+O2 is first order with respect to both NO and O3 with a rate constant of 2.20107 L/mol/s. What is the instantaneous rate of disappearance of NO when [NO]=3.3106 M and [O3]=5.9107M?arrow_forwardIn Exercise 11.39, if the initial concentration of N2Oj is 0.100 .\1. how long will it take for the concentration to drop to 0.0100 times its original value? The decomposition of N2O5 in solution in carbon tetrachloride is a first-order reaction: 2N2O5—»4NO2 + O2 The rate constant at a given temperature is found to be 5.25 X 10-4 s-’. If the initial concentration of N2O5 is 0.200 M, what is its concentration after exactly 10 minutes have passed?arrow_forward
- Hundreds of different reactions occur in the stratosphere, among them reactions that destroy the Earths ozone layer. The table below lists several (second-order) reactions of Cl atoms with ozone and organic compounds; each is given with its rate constant. For equal concentrations of Cl and the other reactant, which is the slowest reaction? Which is the fastest reaction?arrow_forwardThe rate constant, k, at 25 C is 0.27/h for the reaction Pt(NH3)2Cl2(aq) + H2O() [Pt(NH3)2(H2O)Cl]+(aq) + Cl(aq) and the rate equation is Reaction rate = k[Pt(NH3)2C12] Calculate the rate of reaction when the concentration of Pt(NH3)2Cl2 is 0.020 M.arrow_forwardIn the presence of excess thiocyanate ion, SCN, the following reaction is first order in iron(III) ion, Fe3+; the rate constant is 1.27/s. Fe3+(aq)+SCN(aq)Fe(SCN)2+(aq) What is the half-life in seconds? How many seconds would be required for the initial concentration of Fe3+ to decrease to each of the following values: 25.0% left, 12.5% left, 6.25% left, 3.125% left? What is the relationship between these times and the half-life?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning