Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 27P
The depths of water upstream and downstream from a hydraulic jump on the horizontal “apron” downstream from a spillway structure are observed to be approximately 3 ft and 8 ft. If the structure is 200 ft long (perpendicular to the direction of flow), about how much horsepower is being dissipated in this jump?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question
: A stream bed has a rectangular cross section 5 meters wide and a slope of
0.0002 m/m. The flow rate in the stream is 8.75 m³/s. A dam is built across the stream, causing
the water surface to rise to 2.5 meters just upstream of the dam, as shown below. Assume n =
0.015.
y = yn
2.5 m
a. Find the normal depth, yn, corresponding to this flow rate and channel geometry. You do
not need to solve the equation by hand. To get full credit, show your equation with only
one unknown.
b. Find the critical depth, yc.
c. The yn is found to be 1.8 m by solving the equation numerically. Identify the water
surface profile upstream of the dam. Explain your answer for full credit.
3.In one section of the irrigation canal, the narrowing of 1.5 times the width upstream (as
shown in the figure below). If the uniform channel cross section is rectangular with the
downstream width (b2) = 4.5 m, the velocity (V1) and depth (y1) of the upstream flow are
measured to be 0.2 m/s and 4.0 m, determine the energy loss (hf ) due to channel narrowing
if the downstream flow depth is assumed to be the same as the upstream flow depth !
b2
bị
V1
Q(3):A rectangular channel is to be dug in the rocky portion of a soil. Find its most
economical cross-section if it is to convey 12 m3/s of water with an average velocity of 3
m/s. Take Chezy's constant C = 50.
Chapter 11 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 11 - Verify the equation given in Table 11.1 for the...Ch. 11 - A pebble is dropped into a stream of water that...Ch. 11 - Solution of the complete differential equations...Ch. 11 - A water flow rate of 250 cfs flows at a depth of 5...Ch. 11 - Determine and plot the relation between water...Ch. 11 - Capillary waves (ripples) are small amplitude and...Ch. 11 - The Froude number characterizes flow with a free...Ch. 11 - Consider waves on the surface of a tank of water...Ch. 11 - A submerged body traveling horizontally beneath a...Ch. 11 - Water flows in a rectangular channel at a depth of...
Ch. 11 - A partially open sluice gate in a 5-m-wide...Ch. 11 - Find the critical depth for flow at 3 m3/s in a...Ch. 11 - Flow occurs in a rectangular channel of 6 m width...Ch. 11 - What is the maximum flow rate that may occur in a...Ch. 11 - A rectangular channel carries a discharge of 10...Ch. 11 - Flow in the channel of Problem 11.15 has a...Ch. 11 - Consider the Venturi flume shown. The bed is...Ch. 11 - Eleven cubic meters per second of water are...Ch. 11 - A rectangular channel 10 ft wide carries 100 cfs...Ch. 11 - At what depths can 800 cfs flow in a trapezoidal...Ch. 11 - At a section of a 10-ft-wide rectangular channel,...Ch. 11 - Water, at 3 ft/s and 2 ft depth, approaches a...Ch. 11 - A horizontal rectangular channel 3 ft wide...Ch. 11 - A hydraulic jump occurs in a rectangular channel...Ch. 11 - A hydraulic jump occurs in a wide horizontal...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - The depths of water upstream and downstream from a...Ch. 11 - Calculate y2, h, and y3 for this two-dimensional...Ch. 11 - The hydraulic jump may be used as a crude flow...Ch. 11 - A hydraulic jump occurs on a horizontal apron...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - A positive surge wave, or moving hydraulic jump,...Ch. 11 - A 2-m-wide rectangular channel with a bed slope of...Ch. 11 - Determine the uniform flow depth in a rectangular...Ch. 11 - Determine the uniform flow depth in a trapezoidal...Ch. 11 - Water flows uniformly at a depth of 1.2 m in a...Ch. 11 - This large uniform open channel flow is to be...Ch. 11 - A rectangular flume built of timber is 3 ft wide....Ch. 11 - A channel with square cross section is to carry 20...Ch. 11 - A triangular channel with side angles of 45 is to...Ch. 11 - A flume of timber has as its cross section an...Ch. 11 - At what depth will 4.25 m3/s flow uniformly in a...Ch. 11 - A semicircular trough of corrugated steel, with...Ch. 11 - A rectangular flume built of concrete with 1 ft...Ch. 11 - Water flows in a trapezoidal channel at a flow...Ch. 11 - What slope is necessary to carry 11 m3/s uniformly...Ch. 11 - Find the normal depth for the channel of Problem...Ch. 11 - For a trapezoidal shaped channel with n = 0.014...Ch. 11 - Compute the critical depth for the channel in...Ch. 11 - A trapezoidal canal lined with brick has side...Ch. 11 - An optimum rectangular storm sewer channel made of...Ch. 11 - For a sharp-crested suppressed weir of length B =...Ch. 11 - A rectangular sharp-crested weir with end...Ch. 11 - What is the depth of water behind a rectangular...Ch. 11 - A broad-crested weir 0.9 m high has a flat crest...Ch. 11 - The head on a 90 V-notch weir is 1.5 ft. Determine...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The assembly consists of two red brass C83400 copper rods AB and CD of diameter 30 mm, a stainless 304 steel al...
Mechanics of Materials (10th Edition)
Define each of the following terms: supertype subtype specialization entity cluster completeness constraint enh...
Modern Database Management
In the following exercises, write a program to carry out the task. The program should use variables for each of...
Introduction To Programming Using Visual Basic (11th Edition)
For the circuit shown, use the node-voltage method to find v1, v2, and i1.
How much power is delivered to the c...
Electric Circuits. (11th Edition)
The following code fragment will not compile. Why? if !x x | y x = 2 + x; else x = x | 3;
Java: An Introduction to Problem Solving and Programming (8th Edition)
Write an evaluation of some programming language you know, using the criteria described in this chapter.
Concepts Of Programming Languages
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The tank shown drains through a triangular weir whose flowrate is described by the equation given. Determine the time it will take for the tank to drain from completely full (h = 5 ft) to 5.25 feet deep (h = 0.25 ft) assuming there is no flow into the tank. Volumetric Flowrate h=5 ft + 5 ft 3 ft³ S = 2.48 h².5 (for h in feet) 10 ft -20 ft- -20 ft-arrow_forward7.5 m -2.0 m 6.0 m h where b = weir width (m) 2 g = gravitational acceleration (m/s) h = height of water above the weir edge (m) 2.0 m 1.0 m wide weir water flows out through this opening The surge tank pictured (shown with clear sides for illustration purposes) is used to even out variable flows. During periods of high flow, excess water is diverted to the surge tank where it flows out more slowly over the weir. The volumetric flow over the weir is V = 0.011 * b* g¹/2h³/2 Assuming no excess flow is currently being diverted to the surge tank, determine the time required for the water level in the tank to become 6.25 m if the initial height is 7.5 marrow_forwardWater flows in an open channel across a weir which occupies the full width of the channel. The lenght of the weir is 0.5 m and the height of water over the weir is 100 mm. What is the flow rate of water?arrow_forward
- Please give me right solution... Please remember I want correct solution A rectangular weir having a length of one meter is constructed at one end of a tank having a square section 20 x 20m and a height 10m. If the initial head on the weir is 1m, determine the time required to discharge a volume of 72 cu.m.arrow_forwardWater flows over a dam into a rectangular channel of width b (out of page). At the bottom of the dam, the depth of flow is h₁. As you may have seen on watching rapid channel flow, the water may suddenly change elevation to height h₂ as it passes through a highly disturbed region called the hydraulic jump. If velocity is assumed uniform at 1 and 2, compute the height h2 using the control volume analysis. Take the pressures at 1 and 2 as hydrostatic, and assume that the flow is steady. Neglect friction at the channel bed and walls. (Courtesy of the Wright Water Engineers, Inc. and ASDSO) Hydraulic jump h₁ = 3 ft V₁ = 25 ft/s BE 2 h₂ =? V₂ = ? (a) Find the cubic equation, in terms of h₁, V₁, and g, that you must solve for the downstream depth h₂ of the water channel. (b) For h₁ = 3 ft and V₁ = 25 ft/s, find the downstream depth h₂. Use the standard value for g. Note that you are solving a cubic equation, and only one of the solutions is correct.arrow_forwardPlease don't provide handwritten solution .....arrow_forward
- Water flows in a rectangular channel with a width of 2.5 m. The kinetic energy correction coefficient (i.e. velocity coefficient) is estimated as a = 1.2. If the flow rate is 5 m³/s and the flow depth is 1.5 m: (a) determine the specific energy of the flow. (b) Calculate the alternate depth considering α = 1.0.arrow_forwardWater is to be transported in an unfinished-concrete rectangular channel with a bottom width of 4 ft at a rate of 51 ft3/s. The terrain is such that the channel bottom drops 2 ft per 1000 ft length. Determine the minimum height of the channel under uniform-flow conditions. What would your answer be if the bottom drop is just 1 ft per 1000 ft length?arrow_forwardI need help correcting this problem (step by step for what is wrong).arrow_forward
- A rectangular channel 6 m wide with a depth of flow of 3 m has a mean velocity of 1.5 m/s. The channel undergoes a smooth, gradual contraction to a width of 4.5 m. Calculate the net fluid force on the walls and floor of the contraction in the flow direction.arrow_forwardFluid Mechanics Hw #9arrow_forwardv² L 1) Show that the expression for head loss in a half full pipe is stilh, = f 2g D Why is it the same as for a full pipe? Prove to yourself that the bed shear stress in a rectangular channel is to=pgRhSo (see slide 157). What is the expression for a wide rectangular channel? 2) Find the necessary fall in elevation of the channel below if it required to carry a uniform flow of 25m/s over a distance of 10km. Assume a bed roughness of 3mm and use a Darcy friction factor. 1.5m 1.5m 4m 1.5m (Ans: (f-0.018), (C=66m²/s), 14.4m)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY