Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 24P
A hydraulic jump occurs in a rectangular channel 4.0 m wide. The water depth before the jump is 0.4 m and after the jump is 1.7 m. Compute the flow rate in the channel, the critical depth, and the head loss in the jump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The bottom slope of a hydraulically optimum rectangular duct is 0.045 and the Manning friction coefficient is 0.025. If the height of the hydraulic jump formed in this channel is H = 3.5m; How many meters (m) are the energy losses due to the hydraulic jump?
Compute for the critical depth in a channel with constant spesific energy of 5cm in a channel with 2.5 width and flow of 2m/sec
Water flows in an open channel across a weir which occupies the full width of the channel. The lenght of the weir is 0.5 m and the height of water over the weir is 100 mm. What is the flow rate of water?
Chapter 11 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 11 - Verify the equation given in Table 11.1 for the...Ch. 11 - A pebble is dropped into a stream of water that...Ch. 11 - Solution of the complete differential equations...Ch. 11 - A water flow rate of 250 cfs flows at a depth of 5...Ch. 11 - Determine and plot the relation between water...Ch. 11 - Capillary waves (ripples) are small amplitude and...Ch. 11 - The Froude number characterizes flow with a free...Ch. 11 - Consider waves on the surface of a tank of water...Ch. 11 - A submerged body traveling horizontally beneath a...Ch. 11 - Water flows in a rectangular channel at a depth of...
Ch. 11 - A partially open sluice gate in a 5-m-wide...Ch. 11 - Find the critical depth for flow at 3 m3/s in a...Ch. 11 - Flow occurs in a rectangular channel of 6 m width...Ch. 11 - What is the maximum flow rate that may occur in a...Ch. 11 - A rectangular channel carries a discharge of 10...Ch. 11 - Flow in the channel of Problem 11.15 has a...Ch. 11 - Consider the Venturi flume shown. The bed is...Ch. 11 - Eleven cubic meters per second of water are...Ch. 11 - A rectangular channel 10 ft wide carries 100 cfs...Ch. 11 - At what depths can 800 cfs flow in a trapezoidal...Ch. 11 - At a section of a 10-ft-wide rectangular channel,...Ch. 11 - Water, at 3 ft/s and 2 ft depth, approaches a...Ch. 11 - A horizontal rectangular channel 3 ft wide...Ch. 11 - A hydraulic jump occurs in a rectangular channel...Ch. 11 - A hydraulic jump occurs in a wide horizontal...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - The depths of water upstream and downstream from a...Ch. 11 - Calculate y2, h, and y3 for this two-dimensional...Ch. 11 - The hydraulic jump may be used as a crude flow...Ch. 11 - A hydraulic jump occurs on a horizontal apron...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - A positive surge wave, or moving hydraulic jump,...Ch. 11 - A 2-m-wide rectangular channel with a bed slope of...Ch. 11 - Determine the uniform flow depth in a rectangular...Ch. 11 - Determine the uniform flow depth in a trapezoidal...Ch. 11 - Water flows uniformly at a depth of 1.2 m in a...Ch. 11 - This large uniform open channel flow is to be...Ch. 11 - A rectangular flume built of timber is 3 ft wide....Ch. 11 - A channel with square cross section is to carry 20...Ch. 11 - A triangular channel with side angles of 45 is to...Ch. 11 - A flume of timber has as its cross section an...Ch. 11 - At what depth will 4.25 m3/s flow uniformly in a...Ch. 11 - A semicircular trough of corrugated steel, with...Ch. 11 - A rectangular flume built of concrete with 1 ft...Ch. 11 - Water flows in a trapezoidal channel at a flow...Ch. 11 - What slope is necessary to carry 11 m3/s uniformly...Ch. 11 - Find the normal depth for the channel of Problem...Ch. 11 - For a trapezoidal shaped channel with n = 0.014...Ch. 11 - Compute the critical depth for the channel in...Ch. 11 - A trapezoidal canal lined with brick has side...Ch. 11 - An optimum rectangular storm sewer channel made of...Ch. 11 - For a sharp-crested suppressed weir of length B =...Ch. 11 - A rectangular sharp-crested weir with end...Ch. 11 - What is the depth of water behind a rectangular...Ch. 11 - A broad-crested weir 0.9 m high has a flat crest...Ch. 11 - The head on a 90 V-notch weir is 1.5 ft. Determine...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
__________ are useful for performing initialization or setup routines in a class object.
Starting Out with C++ from Control Structures to Objects (9th Edition)
ICA 8-51
The thermal conductivity of a plastic is 0.325 British thermal units per foot hour degree Fahrenheit [...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Describe the advantages and disadvantages of DBMS-provided security.
Database Concepts (8th Edition)
Find the no-load value of υo in the circuit shown.
Find υo when RL is 150 Ω.
How much power is dissipated in th...
Electric Circuits. (11th Edition)
Figure 2-26 shows a grade report that is mailed to students at the end of each semester. Prepare an ERD reflect...
Modern Database Management
What output is produced by the following code? int count = 0; do { System.out. println(count); count ++; } whil...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The water flows in the channel with a base slope of 0.003 and the cross-section shown in Figure 3. The dimensions of different subdivisions and the Manning coefficients for surfaces are also shown in the figure.a) calculate the volume flow flowing through the Channel.B) calculate the Manning coefficient.arrow_forward1Water flows through a rectangular sharp-crested weir with a channel width of 2 m. The channel depth is 1 m with a weir head of 0.1 m. Calculate the discharge. Make a sketch of the channel along with the weir piecesarrow_forwardConsider the uniform flow of water in the triangular channel shown in the figure. The channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the channel is 25 m³/s. What is the normal depth? a.3.48 m b.2.28 m c.4.70 m d. 1.98 m What is the critical depth? a. 1.98 m b.4.70 m c.3.48 m d.2.28 m If the flow depth at a certain section of the channel is 2 m, the flow is: a.subcritical b.critical c.supercritical d.can not be determined VAI 2 1arrow_forward
- Water flows at a steady and uniform depth of 2 m in an open channel of rectangular crosssection having a base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a hump in the bed. Calculate the height of the hump and sketch the flow profile. Consider the value of Manning’s roughness coefficient n =0.02 for the channel surface.arrow_forwardA rectangular channel is 3.0 m wide and carries a discharge of 3.3 m³/s at a depth of 0.9 m. A smooth contraction of the channel width is proposed at a section. Find the smallest contracted width that will not affect the upstream flow conditions. Neglect the energy losses in the transition.arrow_forwardQUESTION 5 A hydraulic jump at the base of a spillway of a dam is such that the depths upstream and downstream of the jump are 0.7 m and 3.6 m respectively. The spillway is 50 m wide. Calculate: 5.1.1 The flow rate over the spillway 5.1.2 The head loss across the hydraulic jump 5.1.3 The power dissipated by the hydraulic jump 5.2.1 A trapezoidal channel (figure 5) with a bottom width of 6 m, free surface width of 12 m, and flow depth of 2.2 m discharges water at a rate of 120 m³/s. If the surfaces of the channel are lined with asphalt (n = 0.016), determine the elevation drop of the channel per kilometer. 12 m 2.2 m 6 m Figure 5 tan www.bmwarrow_forward
- Find the best hydraulic section for rectangular section of 0.5m3/s and 1.2m/sarrow_forwardThe radial gate used to control the flow at 2.5m wide rectangular channel. For a specific opening the discharge from this gate was 3.65-³/5. Find G for modular flow. use 8=20 and y₁=1.76m.arrow_forwardWater flows in a rectangular channel with a width of 2.5 m. The kinetic energy correction coefficient (i.e. velocity coefficient) is estimated as a = 1.2. If the flow rate is 5 m³/s and the flow depth is 1.5 m: (a) determine the specific energy of the flow. (b) Calculate the alternate depth considering α = 1.0.arrow_forward
- Water flows through a rectangular channel of 2 m wide. The depth of flow is 1 m and the total discharge is 4.0 m³/s. If the height of the channel bed above the datum is 2 m compute the specific energy and the total energy.arrow_forwardA venturiflame is 1.3 m wide at entrance and 0.65m in the throat.Neglecting hydraulic losses in the flume, calculate the flow if the depths at the entrance and throat are 0.65m and 0.6 m respectively.A hump is now installed at the throat of height 200mm,so that a standing wave (hydraulic jump)is formed beyond the throat.What is the increase in the upstream depth when the same flow as before passes through the flume?arrow_forwardWater flowing in a wide channel at a depth of 2 ft and a velocity of 40 ft/s undergoes a hydraulic jump. Determine the flow depth, velocity, and Froude number after the jump, and the head loss associated with the jump.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License