Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 30P
A hydraulic jump occurs on a horizontal apron downstream from a wide spillway at a location where depth is 0.9 m and speed is 25 m/s. Estimate the depth and speed downstream from the jump. Compare the specific energy downstream of the jump to that upstream.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rectangular channel is 3.0 m wide and carries a discharge of 3.3 m³/s at a depth of 0.9 m. A smooth contraction of
the channel width is proposed at a section. Find the smallest contracted width that will not affect the upstream flow
conditions. Neglect the energy losses in the transition.
The bottom slope of a hydraulically optimum rectangular duct is 0.045 and the Manning friction coefficient is 0.025. If the height of the hydraulic jump formed in this channel is H = 3.5m; How many meters (m) are the energy losses due to the hydraulic jump?
Water flows in an open channel across a weir which occupies the full width of the channel. The lenght of the weir is 0.5 m and the height of water over the weir is 100 mm. What is the flow rate of water?
Chapter 11 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 11 - Verify the equation given in Table 11.1 for the...Ch. 11 - A pebble is dropped into a stream of water that...Ch. 11 - Solution of the complete differential equations...Ch. 11 - A water flow rate of 250 cfs flows at a depth of 5...Ch. 11 - Determine and plot the relation between water...Ch. 11 - Capillary waves (ripples) are small amplitude and...Ch. 11 - The Froude number characterizes flow with a free...Ch. 11 - Consider waves on the surface of a tank of water...Ch. 11 - A submerged body traveling horizontally beneath a...Ch. 11 - Water flows in a rectangular channel at a depth of...
Ch. 11 - A partially open sluice gate in a 5-m-wide...Ch. 11 - Find the critical depth for flow at 3 m3/s in a...Ch. 11 - Flow occurs in a rectangular channel of 6 m width...Ch. 11 - What is the maximum flow rate that may occur in a...Ch. 11 - A rectangular channel carries a discharge of 10...Ch. 11 - Flow in the channel of Problem 11.15 has a...Ch. 11 - Consider the Venturi flume shown. The bed is...Ch. 11 - Eleven cubic meters per second of water are...Ch. 11 - A rectangular channel 10 ft wide carries 100 cfs...Ch. 11 - At what depths can 800 cfs flow in a trapezoidal...Ch. 11 - At a section of a 10-ft-wide rectangular channel,...Ch. 11 - Water, at 3 ft/s and 2 ft depth, approaches a...Ch. 11 - A horizontal rectangular channel 3 ft wide...Ch. 11 - A hydraulic jump occurs in a rectangular channel...Ch. 11 - A hydraulic jump occurs in a wide horizontal...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - The depths of water upstream and downstream from a...Ch. 11 - Calculate y2, h, and y3 for this two-dimensional...Ch. 11 - The hydraulic jump may be used as a crude flow...Ch. 11 - A hydraulic jump occurs on a horizontal apron...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - A positive surge wave, or moving hydraulic jump,...Ch. 11 - A 2-m-wide rectangular channel with a bed slope of...Ch. 11 - Determine the uniform flow depth in a rectangular...Ch. 11 - Determine the uniform flow depth in a trapezoidal...Ch. 11 - Water flows uniformly at a depth of 1.2 m in a...Ch. 11 - This large uniform open channel flow is to be...Ch. 11 - A rectangular flume built of timber is 3 ft wide....Ch. 11 - A channel with square cross section is to carry 20...Ch. 11 - A triangular channel with side angles of 45 is to...Ch. 11 - A flume of timber has as its cross section an...Ch. 11 - At what depth will 4.25 m3/s flow uniformly in a...Ch. 11 - A semicircular trough of corrugated steel, with...Ch. 11 - A rectangular flume built of concrete with 1 ft...Ch. 11 - Water flows in a trapezoidal channel at a flow...Ch. 11 - What slope is necessary to carry 11 m3/s uniformly...Ch. 11 - Find the normal depth for the channel of Problem...Ch. 11 - For a trapezoidal shaped channel with n = 0.014...Ch. 11 - Compute the critical depth for the channel in...Ch. 11 - A trapezoidal canal lined with brick has side...Ch. 11 - An optimum rectangular storm sewer channel made of...Ch. 11 - For a sharp-crested suppressed weir of length B =...Ch. 11 - A rectangular sharp-crested weir with end...Ch. 11 - What is the depth of water behind a rectangular...Ch. 11 - A broad-crested weir 0.9 m high has a flat crest...Ch. 11 - The head on a 90 V-notch weir is 1.5 ft. Determine...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
How is the tool-work relationship in turning different from that in facing?
Degarmo's Materials And Processes In Manufacturing
The contents of this type of file can be viewed in an editor such as Notepad. a. text file b. binary file c. En...
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Convert the following If Then Elself statement into a Select Case statement. If intQuantity = 0 And intQuanti...
Starting Out With Visual Basic (8th Edition)
True or False: You cannot create an array of generic class objects.
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
The ________ object is assumed to exist and it is not necessary to include it as an object when referring to it...
Web Development and Design Foundations with HTML5 (8th Edition)
Big data Big data describes datasets with huge volumes that are beyond the ability of typical database manageme...
Management Information Systems: Managing The Digital Firm (16th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water flows at a steady and uniform depth of 2 m in an open channel of rectangular crosssection having a base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a hump in the bed. Calculate the height of the hump and sketch the flow profile. Consider the value of Manning’s roughness coefficient n =0.02 for the channel surface.arrow_forwardA venturiflame is 1.3 m wide at entrance and 0.65m in the throat.Neglecting hydraulic losses in the flume, calculate the flow if the depths at the entrance and throat are 0.65m and 0.6 m respectively.A hump is now installed at the throat of height 200mm,so that a standing wave (hydraulic jump)is formed beyond the throat.What is the increase in the upstream depth when the same flow as before passes through the flume?arrow_forwardWater flows in a rectangular channel with a width of 2.5 m. The kinetic energy correction coefficient (i.e. velocity coefficient) is estimated as a = 1.2. If the flow rate is 5 m³/s and the flow depth is 1.5 m: (a) determine the specific energy of the flow. (b) Calculate the alternate depth considering α = 1.0.arrow_forward
- Compute for the critical depth in a channel with constant spesific energy of 5cm in a channel with 2.5 width and flow of 2m/secarrow_forwardFind the best hydraulic section for rectangular section of 0.5m3/s and 1.2m/sarrow_forward7.5 m -2.0 m 6.0 m h where b = weir width (m) 2 g = gravitational acceleration (m/s) h = height of water above the weir edge (m) 2.0 m 1.0 m wide weir water flows out through this opening The surge tank pictured (shown with clear sides for illustration purposes) is used to even out variable flows. During periods of high flow, excess water is diverted to the surge tank where it flows out more slowly over the weir. The volumetric flow over the weir is V = 0.011 * b* g¹/2h³/2 Assuming no excess flow is currently being diverted to the surge tank, determine the time required for the water level in the tank to become 6.25 m if the initial height is 7.5 marrow_forward
- 1Water flows through a rectangular sharp-crested weir with a channel width of 2 m. The channel depth is 1 m with a weir head of 0.1 m. Calculate the discharge. Make a sketch of the channel along with the weir piecesarrow_forwardNiloarrow_forwardAn irrigation channel of trapezoidal section, having side slopes 3 horizontal to 2 vertical, is to carry flow of 10 cumec on a longitudinal slope of 1 in 5000. The channel is to be lined for which the value of friction coefficient in Manning's formula is n = 0.012. Find the dimensions of the most economic section of the channel.arrow_forward
- Please give me right solution... Please remember I want correct solution A rectangular weir having a length of one meter is constructed at one end of a tank having a square section 20 x 20m and a height 10m. If the initial head on the weir is 1m, determine the time required to discharge a volume of 72 cu.m.arrow_forwardConsider the uniform flow of water in the triangular channel shown in the figure. The channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the channel is 25 m³/s. What is the normal depth? a.3.48 m b.2.28 m c.4.70 m d. 1.98 m What is the critical depth? a. 1.98 m b.4.70 m c.3.48 m d.2.28 m If the flow depth at a certain section of the channel is 2 m, the flow is: a.subcritical b.critical c.supercritical d.can not be determined VAI 2 1arrow_forwardThe water flows in the channel with a base slope of 0.003 and the cross-section shown in Figure 3. The dimensions of different subdivisions and the Manning coefficients for surfaces are also shown in the figure.a) calculate the volume flow flowing through the Channel.B) calculate the Manning coefficient.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License