Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 47P
Find the normal depth for the channel of Problem 11.45 after a new plastic liner is installed.
Water flows in a trapezoidal channel at a flow rate of 10 m3/s. The bottom width is 2.4 m, the sides slope at 1:1, and the bed slope is 0.00193. The channel is excavated from bare soil. Find the depth of the flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1Water flows through a rectangular sharp-crested weir with a channel width of 2 m. The channel depth is 1 m with a weir head of 0.1 m.
Calculate the discharge.
Make a sketch of the channel along with the weir pieces
Compute for the critical depth in a channel with constant spesific energy of 5cm in a channel with 2.5 width and flow of 2m/sec
Consider the uniform flow of water in the triangular channel shown in the figure. The
channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the
channel is 25 m³/s.
What is the normal depth?
a.3.48 m
b.2.28 m
c.4.70 m
d. 1.98 m
What is the critical depth?
a. 1.98 m
b.4.70 m
c.3.48 m
d.2.28 m
If the flow depth at a certain section of the channel is 2 m, the flow is:
a.subcritical
b.critical
c.supercritical
d.can not be determined
VAI
2
1
Chapter 11 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 11 - Verify the equation given in Table 11.1 for the...Ch. 11 - A pebble is dropped into a stream of water that...Ch. 11 - Solution of the complete differential equations...Ch. 11 - A water flow rate of 250 cfs flows at a depth of 5...Ch. 11 - Determine and plot the relation between water...Ch. 11 - Capillary waves (ripples) are small amplitude and...Ch. 11 - The Froude number characterizes flow with a free...Ch. 11 - Consider waves on the surface of a tank of water...Ch. 11 - A submerged body traveling horizontally beneath a...Ch. 11 - Water flows in a rectangular channel at a depth of...
Ch. 11 - A partially open sluice gate in a 5-m-wide...Ch. 11 - Find the critical depth for flow at 3 m3/s in a...Ch. 11 - Flow occurs in a rectangular channel of 6 m width...Ch. 11 - What is the maximum flow rate that may occur in a...Ch. 11 - A rectangular channel carries a discharge of 10...Ch. 11 - Flow in the channel of Problem 11.15 has a...Ch. 11 - Consider the Venturi flume shown. The bed is...Ch. 11 - Eleven cubic meters per second of water are...Ch. 11 - A rectangular channel 10 ft wide carries 100 cfs...Ch. 11 - At what depths can 800 cfs flow in a trapezoidal...Ch. 11 - At a section of a 10-ft-wide rectangular channel,...Ch. 11 - Water, at 3 ft/s and 2 ft depth, approaches a...Ch. 11 - A horizontal rectangular channel 3 ft wide...Ch. 11 - A hydraulic jump occurs in a rectangular channel...Ch. 11 - A hydraulic jump occurs in a wide horizontal...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - The depths of water upstream and downstream from a...Ch. 11 - Calculate y2, h, and y3 for this two-dimensional...Ch. 11 - The hydraulic jump may be used as a crude flow...Ch. 11 - A hydraulic jump occurs on a horizontal apron...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - A positive surge wave, or moving hydraulic jump,...Ch. 11 - A 2-m-wide rectangular channel with a bed slope of...Ch. 11 - Determine the uniform flow depth in a rectangular...Ch. 11 - Determine the uniform flow depth in a trapezoidal...Ch. 11 - Water flows uniformly at a depth of 1.2 m in a...Ch. 11 - This large uniform open channel flow is to be...Ch. 11 - A rectangular flume built of timber is 3 ft wide....Ch. 11 - A channel with square cross section is to carry 20...Ch. 11 - A triangular channel with side angles of 45 is to...Ch. 11 - A flume of timber has as its cross section an...Ch. 11 - At what depth will 4.25 m3/s flow uniformly in a...Ch. 11 - A semicircular trough of corrugated steel, with...Ch. 11 - A rectangular flume built of concrete with 1 ft...Ch. 11 - Water flows in a trapezoidal channel at a flow...Ch. 11 - What slope is necessary to carry 11 m3/s uniformly...Ch. 11 - Find the normal depth for the channel of Problem...Ch. 11 - For a trapezoidal shaped channel with n = 0.014...Ch. 11 - Compute the critical depth for the channel in...Ch. 11 - A trapezoidal canal lined with brick has side...Ch. 11 - An optimum rectangular storm sewer channel made of...Ch. 11 - For a sharp-crested suppressed weir of length B =...Ch. 11 - A rectangular sharp-crested weir with end...Ch. 11 - What is the depth of water behind a rectangular...Ch. 11 - A broad-crested weir 0.9 m high has a flat crest...Ch. 11 - The head on a 90 V-notch weir is 1.5 ft. Determine...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
State if the members are in tension or compression. Prob. F6-1
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Big data Big data describes datasets with huge volumes that are beyond the ability of typical database manageme...
Management Information Systems: Managing The Digital Firm (16th Edition)
In Exercises 61 through 66, rewrite the statements using augmented assignment operators. Assume that each varia...
Introduction To Programming Using Visual Basic (11th Edition)
When used as parameters, _______ variables allow a function to access the parameters original argument.
Starting Out with C++ from Control Structures to Objects (9th Edition)
ICA 8-52
The heat transfer coefficient of steel is 25 watts per square meter degree Celsius [W/(m2 °C)]. Conver...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Find the no-load value of υo in the circuit shown.
Find υo when RL is 150 Ω.
How much power is dissipated in th...
Electric Circuits. (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A compound channel is designed with a semi-circular and a rectangular channel attached to it. Calculate the depth of flow through the cross section of a channel shown in Figure 1where the bed slope, S, is given as 0.005 and having the discharge, Q of 22 m'/s. Take the value of Manning's roughness coefficient as 0.012. 0.75 m 1.5 m 2 m 2 m Figure 1 (Not to scale)arrow_forwardGive me all right solutions with clear calculations.arrow_forward4. The discharge from a 150 mm diameter orifice under a head of 3.05m and coefficient of discharge, C = 0.60 flows into a rectangular channel and over a rectangular suppressed weir. The channel is 1.83m wide and the weir has height, P = 1,50m and length, L = 0.31m. Determine the depth of water in the channel. Use Francis formula and neglect velocity of approach.arrow_forward
- Water flows in an open channel across a weir which occupies the full width of the channel. The lenght of the weir is 0.5 m and the height of water over the weir is 100 mm. What is the flow rate of water?arrow_forwardQUESTION 5 A hydraulic jump at the base of a spillway of a dam is such that the depths upstream and downstream of the jump are 0.7 m and 3.6 m respectively. The spillway is 50 m wide. Calculate: 5.1.1 The flow rate over the spillway 5.1.2 The head loss across the hydraulic jump 5.1.3 The power dissipated by the hydraulic jump 5.2.1 A trapezoidal channel (figure 5) with a bottom width of 6 m, free surface width of 12 m, and flow depth of 2.2 m discharges water at a rate of 120 m³/s. If the surfaces of the channel are lined with asphalt (n = 0.016), determine the elevation drop of the channel per kilometer. 12 m 2.2 m 6 m Figure 5 tan www.bmwarrow_forwardConsider the same rectangular channel as in the previous problem (4.0 m wide, filled with water to 6.0 m, and walls of corrugated metal). If the slope is 0.65°, estimate the volume flow rate of the water.arrow_forward
- Find the best hydraulic section for rectangular section of 0.5m3/s and 1.2m/sarrow_forwardA trapezoidal channel having a bottom slope of 0.001 is carrying a flow of 30 m/s. The bottom width is 10.0 m and the side slopes are 2H to 1V. A control structure is built at the downstream end which raises the water depth at the downstream end to 5.0 m. Compute the water surface profile till 1.20 m. Manning n is 0.013 and a = 1. Select an appropriate Month for your calculations. Please read the question carefully and provide the correct solution with simple steps fast. Please answer quickly.arrow_forwardAn irrigation channel of trapezoidal section, having side slopes 3 horizontal to 2 vertical, is to carry flow of 10 cumec on a longitudinal slope of 1 in 5000. The channel is to be lined for which the value of friction coefficient in Manning's formula is n = 0.012. Find the dimensions of the most economic section of the channel.arrow_forward
- The water flows in the channel with a base slope of 0.003 and the cross-section shown in Figure 3. The dimensions of different subdivisions and the Manning coefficients for surfaces are also shown in the figure.a) calculate the volume flow flowing through the Channel.B) calculate the Manning coefficient.arrow_forwardWater flows at a steady and uniform depth of 2 m in an open channel of rectangular crosssection having a base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a hump in the bed. Calculate the height of the hump and sketch the flow profile. Consider the value of Manning’s roughness coefficient n =0.02 for the channel surface.arrow_forwardProblem 1 Water flows with a velocity of 3 m/s at a depth of 1.5 m in a trapezoidal channel with a 2-m base and sides sloping at 45°. It empties into a circular pipe and flows at 2 m/s. What is the diameter if the pipe flows full?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Pressure Vessels Introduction; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=Z1J97IpFc2k;License: Standard youtube license