Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11, Problem 21P
At a section of a 10-ft-wide rectangular channel, the depth is 0.3 ft for a discharge of 20 ft3/s. A smooth bump 0.1 ft high is placed on the floor of the channel. Determine the local change in flow depth caused by the bump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The flow rate of water in a 10-m-wide horizontal channel is being measured using a 1.3-m-high sharp-crested rectangular weir that spans across the channel. If the water depth upstream is 3.4 m, determine the flow rate of water.
A grass-lined roadside channel (n = 0.02) is triangular in shape with 30° side
slopes and a bottom slope of 0.006. Determine the normal depth of flow
when the discharge is 4.72 cfs (ft3/sec).
Answer:
Water flows uniformly half-full in a 2-m-diameter circular channel that is laid on a grade of 1.5 m/km. If the channel is constructed of finished concrete, determine the flow rate of the water.
Chapter 11 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 11 - Verify the equation given in Table 11.1 for the...Ch. 11 - A pebble is dropped into a stream of water that...Ch. 11 - Solution of the complete differential equations...Ch. 11 - A water flow rate of 250 cfs flows at a depth of 5...Ch. 11 - Determine and plot the relation between water...Ch. 11 - Capillary waves (ripples) are small amplitude and...Ch. 11 - The Froude number characterizes flow with a free...Ch. 11 - Consider waves on the surface of a tank of water...Ch. 11 - A submerged body traveling horizontally beneath a...Ch. 11 - Water flows in a rectangular channel at a depth of...
Ch. 11 - A partially open sluice gate in a 5-m-wide...Ch. 11 - Find the critical depth for flow at 3 m3/s in a...Ch. 11 - Flow occurs in a rectangular channel of 6 m width...Ch. 11 - What is the maximum flow rate that may occur in a...Ch. 11 - A rectangular channel carries a discharge of 10...Ch. 11 - Flow in the channel of Problem 11.15 has a...Ch. 11 - Consider the Venturi flume shown. The bed is...Ch. 11 - Eleven cubic meters per second of water are...Ch. 11 - A rectangular channel 10 ft wide carries 100 cfs...Ch. 11 - At what depths can 800 cfs flow in a trapezoidal...Ch. 11 - At a section of a 10-ft-wide rectangular channel,...Ch. 11 - Water, at 3 ft/s and 2 ft depth, approaches a...Ch. 11 - A horizontal rectangular channel 3 ft wide...Ch. 11 - A hydraulic jump occurs in a rectangular channel...Ch. 11 - A hydraulic jump occurs in a wide horizontal...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - The depths of water upstream and downstream from a...Ch. 11 - Calculate y2, h, and y3 for this two-dimensional...Ch. 11 - The hydraulic jump may be used as a crude flow...Ch. 11 - A hydraulic jump occurs on a horizontal apron...Ch. 11 - A hydraulic jump occurs in a rectangular channel....Ch. 11 - A positive surge wave, or moving hydraulic jump,...Ch. 11 - A 2-m-wide rectangular channel with a bed slope of...Ch. 11 - Determine the uniform flow depth in a rectangular...Ch. 11 - Determine the uniform flow depth in a trapezoidal...Ch. 11 - Water flows uniformly at a depth of 1.2 m in a...Ch. 11 - This large uniform open channel flow is to be...Ch. 11 - A rectangular flume built of timber is 3 ft wide....Ch. 11 - A channel with square cross section is to carry 20...Ch. 11 - A triangular channel with side angles of 45 is to...Ch. 11 - A flume of timber has as its cross section an...Ch. 11 - At what depth will 4.25 m3/s flow uniformly in a...Ch. 11 - A semicircular trough of corrugated steel, with...Ch. 11 - A rectangular flume built of concrete with 1 ft...Ch. 11 - Water flows in a trapezoidal channel at a flow...Ch. 11 - What slope is necessary to carry 11 m3/s uniformly...Ch. 11 - Find the normal depth for the channel of Problem...Ch. 11 - For a trapezoidal shaped channel with n = 0.014...Ch. 11 - Compute the critical depth for the channel in...Ch. 11 - A trapezoidal canal lined with brick has side...Ch. 11 - An optimum rectangular storm sewer channel made of...Ch. 11 - For a sharp-crested suppressed weir of length B =...Ch. 11 - A rectangular sharp-crested weir with end...Ch. 11 - What is the depth of water behind a rectangular...Ch. 11 - A broad-crested weir 0.9 m high has a flat crest...Ch. 11 - The head on a 90 V-notch weir is 1.5 ft. Determine...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
In Exercises 61 through 66, rewrite the statements using augmented assignment operators. Assume that each varia...
Introduction To Programming Using Visual Basic (11th Edition)
The two general categories of software are _____ and_____.
Starting Out with C++: Early Objects (9th Edition)
Consider the following skeletal C program: void fun1(void); / prototype / void fun2(void); / prototype / void f...
Concepts Of Programming Languages
What are some of the functions of the electrode coatings used in shielded metal arc welding?
Degarmo's Materials And Processes In Manufacturing
T F A structure declaration does not define a variable.
Starting Out with C++ from Control Structures to Objects (9th Edition)
ICA 8-13
A golden bar of metal (5 centimeters [cm] by 18 cent meters [cm] by 4 centimeters [cm]) being transpor...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water is flowing uniformly in a finished-concrete channel of trapezoidal cross section with a bottom width of 0.8 m, trapezoid angle of 50°, and a bottom angle of 0.4°. If the flow depth is measured to be 0.52 m, determine the flow rate of water through the channel.arrow_forwardWater flows steadily in a 1.75-m-wide rectangular channel at a rate of 0.85 m3/s. If the flow depth is 0.40 m, determine the flow velocity and if the flow is subcritical or supercritical. Also determine the alternate flow depth if the character of flow were to change.arrow_forwardWater at 15°C is flowing uniformly in a 2-m-wide rectangular channel at an average velocity of 1.5 m/s. If the water depth is 24 cm, determine whether the flow is subcritical or supercritical.arrow_forward
- A 6m rectangular channel channel carries a discharge of 30 m³/s at a depth of 2.5m. Determine the channel width that produces critical depth.arrow_forwardA trapezoidal channel has a base width of 8.3 m and side slopes that rise 1 m vertically for every 2 m horizontally. The depth of flow in the channel is 2.7 m, its gradient is 0.001 and the manning’s n is 0.035. Determine the mean velocity in the channelarrow_forwardA rectangular channel with a bottom width of 7 m discharges water at a rate of 45 m3/s. Determine the flow depth below which the flow is supercritical.arrow_forward
- The flow rate of water in a 6-m-wide rectangular channel is to be measured using a 1.3-m-high sharp-crested rectangular weir that spans across the channel. If the head above the weir crest is 0.70 m upstream from the weir, determine the flow rate of water.arrow_forwardPp2arrow_forwardWater is to be transported in an unfinished-concrete rectangular channel with a bottom width of 4 ft at a rate of 51 ft3/s. The terrain is such that the channel bottom drops 2 ft per 1000 ft length. Determine the minimum height of the channel under uniform-flow conditions. What would your answer be if the bottom drop is just 1 ft per 1000 ft length?arrow_forward
- A channel has a slope of 0.0004 m/m with n=0.015. It is expected that the channel will be able to carry a flow rate of 50 m3/s. Determine the normal depth, critical depth, critical slope,hydraulic radius, top width, velocity head, specific energy and the state of flow if the channel section is trapezoidal and its base width is 3.056 m. The side walls make an angle of 45 with horizontal level. Take ρ=1000 kg/m3 and g = 9.81 m/s2 Froude Number is estimated from F(r^2)=(V^2)T/g(A^3)arrow_forwardWater is to be transported in a cast iron rectangular channel with a bottom width of 6 ft at a rate of 70 ft3/s. The terrain is such that the channel bottom drops 2.1 ft per 1000 ft length. Determine the minimum height of the channel under uniform-flow conditionsarrow_forwardWater flows in a rectangular open channel with constant channel width at 1 m depth, 0.8 m/s velocity. Determine the water depth of the channel when the flow velocity changed to 1.6 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License