Eleven cubic meters per second of water are diverted through ports in the bottom of the channel between sections ① and ②. Neglecting head losses and assuming a horizontal channel, what depth of water is to be expected at section ②? What channel width at section ② would be required to produce a depth of 2.5 m?
P11.18
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Additional Engineering Textbook Solutions
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Starting Out With Visual Basic (8th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
Introduction To Programming Using Visual Basic (11th Edition)
- Q5/The normal depth of flow in a rectangular channel (2 m deep and 5 m wide) is 1 m. It is laid to a slope of 1 m/km with a Manning's n = 0.02. Some distance downstream there is a hump of height 0.5 m on the stream bed. Determine the depth of flow (y1) immediately upstream of the hump. Answer: y1 = 1.27 marrow_forwardDesign a box culvert to carry a design discharge of 600 cfs. The culvert invert elevation is 2100 feet, and the allowable headwater elevation is 2114 feet. The paved roadway is 500 feet long and overtops at an elevation of 2115 feet. The culvert length is 200 feet with a slope of 1%. The following tailwater elevations apply up to the maximum discharge of 1000 cfs: Discharge (cfs) 200.00 400.00 600.00 800.00 1000.0Tailwater, ft 2101.4 2102.6 2103.1 2103.8 2104.1 Prepare a performance curve of the culvert design by hand and compare with the results of HY8. Also, use HY8 to prepare a performance curve if the slope is 0.5%.arrow_forwardEXERCISE 3: Water flows at a rate of q=3.13 m/s.m in a rectangular channel shown in the figure on the right. Ja0.00023 no0.015 • Determine the uniform flow depths and the types of flow in Ja 0.00762 Pe-0.015 different parts of the channel. Draw the water surface profile in the transition zone,arrow_forward
- Water flows at a steady and uniform depth of 2 m in an open channel of rectangular crosssection having a base width equal to 5 m and laid at a slope of 1 in 1000. It is desired to obtain critical flow in the channel by providing a hump in the bed. Calculate the height of the hump and sketch the flow profile. Consider the value of Manning’s roughness coefficient n =0.02 for the channel surface.arrow_forwardA trapezoidal channel having a bottom slope of 0.001 is carrying a flow of 30 m/s. The bottom width is 10.0 m and the side slopes are 2H to 1V. A control structure is built at the downstream end which raises the water depth at the downstream end to 5.0 m. Compute the water surface profile till 1.20 m. Manning n is 0.013 and a = 1. Select an appropriate Month for your calculations. Please read the question carefully and provide the correct solution with simple steps fast. Please answer quickly.arrow_forwardA rectangular channel is 3.0 m wide and carries a discharge of 3.3 m³/s at a depth of 0.9 m. A smooth contraction of the channel width is proposed at a section. Find the smallest contracted width that will not affect the upstream flow conditions. Neglect the energy losses in the transition.arrow_forward
- A 6m rectangular channel channel carries a discharge of 30 m³/s at a depth of 2.5m. Determine the channel width that produces critical depth.arrow_forwardQUESTION 5 A hydraulic jump at the base of a spillway of a dam is such that the depths upstream and downstream of the jump are 0.7 m and 3.6 m respectively. The spillway is 50 m wide. Calculate: 5.1.1 The flow rate over the spillway 5.1.2 The head loss across the hydraulic jump 5.1.3 The power dissipated by the hydraulic jump 5.2.1 A trapezoidal channel (figure 5) with a bottom width of 6 m, free surface width of 12 m, and flow depth of 2.2 m discharges water at a rate of 120 m³/s. If the surfaces of the channel are lined with asphalt (n = 0.016), determine the elevation drop of the channel per kilometer. 12 m 2.2 m 6 m Figure 5 tan www.bmwarrow_forwardThe flow rate passing through a rectangular channel with a base width of 4 meters and a water depth of 2.75 meters is 30 m3/s. This channel is narrowed as shown in the figure. If two (2) sections have a base width of 2m, what is the water depth in section (1) in meters (m)?arrow_forward
- Question : A stream bed has a rectangular cross section 5 meters wide and a slope of 0.0002 m/m. The flow rate in the stream is 8.75 m³/s. A dam is built across the stream, causing the water surface to rise to 2.5 meters just upstream of the dam, as shown below. Assume n = 0.015. y = yn 2.5 m a. Find the normal depth, yn, corresponding to this flow rate and channel geometry. You do not need to solve the equation by hand. To get full credit, show your equation with only one unknown. b. Find the critical depth, yc. c. The yn is found to be 1.8 m by solving the equation numerically. Identify the water surface profile upstream of the dam. Explain your answer for full credit.arrow_forwardA channel has a slope of 0.0004 m/m with n=0.015. It is expected that the channel will be able to carry a flow rate of 50 m3/s. Determine the normal depth, critical depth, critical slope,hydraulic radius, top width, velocity head, specific energy and the state of flow if the channel section is trapezoidal and its base width is 3.056 m. The side walls make an angle of 45 with horizontal level. Take ρ=1000 kg/m3 and g = 9.81 m/s2 Froude Number is estimated from F(r^2)=(V^2)T/g(A^3)arrow_forwardConsider the uniform flow of water in the triangular channel shown in the figure. The channel bed slope is 0.003 and the roughness coefficient is 0.025. The flow rate in the channel is 25 m³/s. What is the normal depth? a.3.48 m b.2.28 m c.4.70 m d. 1.98 m What is the critical depth? a. 1.98 m b.4.70 m c.3.48 m d.2.28 m If the flow depth at a certain section of the channel is 2 m, the flow is: a.subcritical b.critical c.supercritical d.can not be determined VAI 2 1arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY