Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.43PP
Figure 11.32 shows a pipe delivering water to the putting green on a golf course. The pressure in the main is at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
7. A large tank is partly filled with water, the air space above being under pressure. A 2" hose connected
to the tank discharges on the roof of a building 50 ft above the level in the tank. The friction loss is 18 ft.
What air pressure must be maintained in the tank to deliver 0.436 cfs on the roof ?
Water at 5°C is to be pumped from the river to the bottom of a water tower. The pump is 5 m above the river (dimension "a" on the diagram below) and is supplied by a 6.00 inch schedule 40
pipe. The tank is 19.5 m above the pump (dimension "b" on the diagram below) and is supplied by a 4 inch schedule 40 pipe. The water level in the tank is 4.3 m above the inlet (dimension "c"
on the diagram below). The pump delivers 0.021 m/s. Losses are estimated to be 1.2 m between the river and the pump, and 4.2 m between the pump and the tank.
Discharge line
Suction line
Pump
River
a) Calculate the losses in the suction line in kPa, based on the given head loss in m.
kPa
b) Calculate velocity in the suction line in m/s.
m/s
c) What is the pressure at the inlet to the pump in kPa?
kPa
A pipe delivering water to the putting green of a gold course has a length of 300 ft. The pressure in
the main is at 80psig and it is necessary to maintain a minimum of 60 psig at point B to adequately
supply a sprinkler system. Specify the required size of a Schedule 40 steel pipe to supply 0.5 ft/s of
water at 60F.
300 ft
25 ft
main
Chapter 11 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 11 - Water at 10C flows from a large reservoir at the...Ch. 11 - For the system shown in Fig. 11.14, kerosene (...Ch. 11 - Figure 11.15 shows a portion of a hydraulic...Ch. 11 - Figure 11.16 shows part of a large hydraulic...Ch. 11 - Oil is flowing at the rate of 0.015m3/s in the...Ch. 11 - For the system shown in Fig. 11.18, calculate the...Ch. 11 - A liquid refrigerant flows through the system,...Ch. 11 - Water at 100F is flowing in a 4-in Schedule 80...Ch. 11 - A hydraulic oil is flowing in a drawn steel...Ch. 11 - In a processing plant, ethylene glycol at 77F is...
Ch. 11 - Water at 15C is flowing downward in a vertical...Ch. 11 - Turpentine at 77F is flowing from A to B in a 3...Ch. 11 - ]11.13 A device designed to allow cleaning of...Ch. 11 - Kerosene at 25C is flowing in the system shown in...Ch. 11 - Water at 40C is flowing from A to B through the...Ch. 11 - Oil with a specific gravity of 0.93 and a dynamic...Ch. 11 - Determine the required size of new Schedule 80...Ch. 11 - What size of standard hydraulic copper tube from...Ch. 11 - Water at 60F is to flow by gravity between two...Ch. 11 - The tank shown in Fig. 11.24 is to be drained to a...Ch. 11 - Figure 11.25 depicts gasoline flowing from a...Ch. 11 - For the system in Fig. 11.26, compute the pressure...Ch. 11 - For the system in Fig. 11.26, compute the total...Ch. 11 - For the system in Fig. 11.26 specify the size of...Ch. 11 - A manufacturer of spray nozzles specifies that the...Ch. 11 - Specify the size of new Schedule 40 steel pipe...Ch. 11 - Refer to Fig. 11.27. Water at 80C is being pumped...Ch. 11 - For the system shown in Fig. 11.27 and analyzed in...Ch. 11 - In a water pollution control project, the polluted...Ch. 11 - Repeat Problem 11.29, but use a 3-in Schedule 40...Ch. 11 - Water at 10C is being delivered to a tank on the...Ch. 11 - If the pressure at point A in Fig. 11.29 is 300...Ch. 11 - Change the design of the system in Fig. 11.29 to...Ch. 11 - It is desired to deliver 250 gal/min of ethyl...Ch. 11 - For the system shown in Fig. 11.30, compute the...Ch. 11 - Repeat Problem 11.35, but consider the valve to be...Ch. 11 - Repeat Problem 11.35, but consider the valve to be...Ch. 11 - Figure 11.31 depicts a DN 100 Schedule 40 steel...Ch. 11 - Repeat Problem 11.38 but replace the globe valve...Ch. 11 - Repeat Problem 11.38 but use a DN 125 Schedule 40...Ch. 11 - Repeat Problem 11.38, but replace the globe valve...Ch. 11 - It is desired to drive a small,...Ch. 11 - Figure 11.32 shows a pipe delivering water to the...Ch. 11 - Repeat Problem 11.43, except consider that there...Ch. 11 - A sump pump in a commercial building sits in a...Ch. 11 - For the system designed in Problem 11.45, compute...Ch. 11 - Figure 11.33 shows a part of a chemical processing...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - Analyze the system shown in Fig. 11.11 with...Ch. 11 - Create a program or a spreadsheet for analyzing...Ch. 11 - Create a program or a spreadsheet for determining...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 3: A submersible deep-well pump delivers 745 gal/ h of water through a 1-in Schedule 40 pipe when operating in the system sketched in the figure below. An energy loss of 10.5 lb-ft/lb occurs in the piping system. (a) Calculate the power delivered by the pump to the water. (b) If the pump draws 1 hp, calculate its efficiency. Air Storage tank 40 psig Vent Well Flow casing 120 ft Well level Pumparrow_forwardQ No. 5: The diameter of side of a pump is 6 inches and that of the intake pipe is 8 inches. The pressure gauge at discharge reads 30 psi and vacuumed gauge at intake reads 10 inches of Hg. If Q=3cfs of water and the brake horsepower is 35. Find the efficiency of the pump. There are no losses. Note : Please Solve as Per Question's Statement. Need a Neat and Clear Solution.See Attached Picture For Detail .arrow_forward2. A main pipe GH branched into three pipes; HI, HJ and HK. A liquid flow with a flow rate of 25 liters/minute via piping HI. If the flowrate in the pipe GH is three times greater than the rate of flow in the pipe HJ and HI flow rate is 1.5 times less than the rate of flow in the pipe HJ. a. Calculate the flow rate in the main pipe GH. b. Get diameter pipes HK if the mean velocity in the pipe HK is 2.3 m/sarrow_forward
- 6. A pump draws water from a sump through a vertical 6" pipe. The pump has a horizontal discharge pipe 4" in diameter that is 10.6 ft above the water level in the sump. While pumping 1.25 cfs, gages near the pump at entrance and discharge read -4.6 psi and +25.6 psi, respectively. The discharge gage is 3.0 ft above the suction gage. Compute the horsepower output of the pump and the head lost in the 6" suction pipe.arrow_forwarda. Solve for the two (2) atmospheric condition, Pn1 & Pn2 at 32.68 0C and 41.12 °C. b. Calculate the diameter of the pipe at suction side if the velocity of air flow is 22.82 m/s with flow rate of 2.96 m³ /second. c. Compute the velocity head at suction side if the velocity is 33.68 m/sec.arrow_forwardQUESTION 3 A submersible deep-well pump delivers 250L/min of water through a 1-in Schedule 40 pipe when operating in the system sketched in Fig. 3. An energy loss of 2.3 m occurs in the piping system. (a) Calculate the power delivered by the pump to the water. (b) If the pump draws 1 hp, calculate its efficiency. A 27 kba 12 marrow_forward
- 2-the discharge through the pipe shown in fig. below is (1.4m'sec and the pressure head for point A is Tm find the pressure heud for point B. d0.Smarrow_forwardpor favor ayúdame con estoarrow_forwardReducer connection connecting a pipe that carries water with a diameter of A (mm) and another with a diameter of B (mm). If the pressure difference between the two ends of the joint is equal to C (mm) of mercury, calculate the average velocity at the inlet and outlet sections, and find the volumetric flow rate if the loss is small that can be neglected.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license