Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.4PP
Figure 11.16 shows part of a large hydraulic system in which the pressure at B must be
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Item#3
A pipe handles a flow rate of 0.002 m³/s. Find the minimum inside diameter that
will provide an average fluid velocity not to exceed 6.1 m/s.
3. Calculate the Reynolds number, Re for water flow in a circular pipe. The diameter of the pipe is 50 mm, the
density of water is 998 kg/m', the volumetric oil flowrate is 720 L'min, and the dynamic viscosity of water is 1.2
centipoise
Based on the layout of the water supply system, as show in Figure 1, the pressure, in psi, is estimated be 46 at the faucet in the and floor of the residential
building. Consider flow through the delivery pipe, Q = 1.50 cfs and diameter of the
pipe, D = 2.65 inch with e = 0.015 inch. Ingore the minor pressure losses and use
the following formulae to calculate the major pressure losses. The additional power in hp required to provide the recommended pressure of 58 psi at the building is
nearly. Assume f = 0.0175.
Use g = 62.4 lb/f3 for water. Water temperature is 20°C (68°F).
Chapter 11 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 11 - Water at 10C flows from a large reservoir at the...Ch. 11 - For the system shown in Fig. 11.14, kerosene (...Ch. 11 - Figure 11.15 shows a portion of a hydraulic...Ch. 11 - Figure 11.16 shows part of a large hydraulic...Ch. 11 - Oil is flowing at the rate of 0.015m3/s in the...Ch. 11 - For the system shown in Fig. 11.18, calculate the...Ch. 11 - A liquid refrigerant flows through the system,...Ch. 11 - Water at 100F is flowing in a 4-in Schedule 80...Ch. 11 - A hydraulic oil is flowing in a drawn steel...Ch. 11 - In a processing plant, ethylene glycol at 77F is...
Ch. 11 - Water at 15C is flowing downward in a vertical...Ch. 11 - Turpentine at 77F is flowing from A to B in a 3...Ch. 11 - ]11.13 A device designed to allow cleaning of...Ch. 11 - Kerosene at 25C is flowing in the system shown in...Ch. 11 - Water at 40C is flowing from A to B through the...Ch. 11 - Oil with a specific gravity of 0.93 and a dynamic...Ch. 11 - Determine the required size of new Schedule 80...Ch. 11 - What size of standard hydraulic copper tube from...Ch. 11 - Water at 60F is to flow by gravity between two...Ch. 11 - The tank shown in Fig. 11.24 is to be drained to a...Ch. 11 - Figure 11.25 depicts gasoline flowing from a...Ch. 11 - For the system in Fig. 11.26, compute the pressure...Ch. 11 - For the system in Fig. 11.26, compute the total...Ch. 11 - For the system in Fig. 11.26 specify the size of...Ch. 11 - A manufacturer of spray nozzles specifies that the...Ch. 11 - Specify the size of new Schedule 40 steel pipe...Ch. 11 - Refer to Fig. 11.27. Water at 80C is being pumped...Ch. 11 - For the system shown in Fig. 11.27 and analyzed in...Ch. 11 - In a water pollution control project, the polluted...Ch. 11 - Repeat Problem 11.29, but use a 3-in Schedule 40...Ch. 11 - Water at 10C is being delivered to a tank on the...Ch. 11 - If the pressure at point A in Fig. 11.29 is 300...Ch. 11 - Change the design of the system in Fig. 11.29 to...Ch. 11 - It is desired to deliver 250 gal/min of ethyl...Ch. 11 - For the system shown in Fig. 11.30, compute the...Ch. 11 - Repeat Problem 11.35, but consider the valve to be...Ch. 11 - Repeat Problem 11.35, but consider the valve to be...Ch. 11 - Figure 11.31 depicts a DN 100 Schedule 40 steel...Ch. 11 - Repeat Problem 11.38 but replace the globe valve...Ch. 11 - Repeat Problem 11.38 but use a DN 125 Schedule 40...Ch. 11 - Repeat Problem 11.38, but replace the globe valve...Ch. 11 - It is desired to drive a small,...Ch. 11 - Figure 11.32 shows a pipe delivering water to the...Ch. 11 - Repeat Problem 11.43, except consider that there...Ch. 11 - A sump pump in a commercial building sits in a...Ch. 11 - For the system designed in Problem 11.45, compute...Ch. 11 - Figure 11.33 shows a part of a chemical processing...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - For the system described in Problem 11.47, and...Ch. 11 - Analyze the system shown in Fig. 11.11 with...Ch. 11 - Create a program or a spreadsheet for analyzing...Ch. 11 - Create a program or a spreadsheet for determining...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. An 80 mm schedule 40 steel pipe is 1800 m long and carries a lubricating oil between 2 points A and B such that the Reynolds number is 1200. Point B is 10 m higher than point A. The oil has a specific gravity of 0.85 and dynamic viscosity of 6.51 X 10-1 Pa.s. If the pressure at A is 345 KPa, calculate the pressure @ B. 2. Determine the energy loss for a sudden contraction from a 4 in schedule 80 steel pipe to a 1.5 in schedule 80 pipe for a flow rate of 250 gal/min. 3. Determine the equivalent length in meters of pipe of a quarter open gate valve placed in a DN 250 schedule 40 pipe.arrow_forwardExample Problem The fluid being pumped is oil with a specific gravity of 0.86. Calculate the energy delivered by the pump to the oil per unit weight of oil flowing in the system. Energy losses in the system are caused by check valve and friction losses as the fluid flows through the piping. The magnitude of such losses has been determined to be 1.86 N.m/N. Pump system. The volume flow rate through the pump shown in figure below is 0.014 m³/s. SOLUTION: +EO PB = 296 kPa Schedule 40 (From Pipe Supplier's Table) Wall Flow Area ao NO ao Thickness DN 50 Schedule 40 (ww) 0.002163 steel pipe 60.3 3.91 52.48 88.9 5.49 77.92 0.004768 08 GENERAL ENERGY EQUATION BETWEEN POINTS A & B: Flow PA/y + Z, + v/2g +h- hg -h = PB/y+ ZB + Vp²/2g 1.0 m %3D Therefore, Ty + 87/(A -A) + ("z - "z ) + ^/(°d - d) = 'y DN 80 Schedule 40 %3D Check valve From continuity equation, v = Q/A, find VA & VB VA = ? steel pipe PA =-28 kPa %3D Vs = ? Pump CHECK ANSWER h =42.9 m, or 42.9 N.m/N %3D 5.arrow_forwardSolve the following problem. View image. Give complete and detailed solutions. Given: Asked: Solution: Please write legibly.arrow_forward
- 4. A special oil is to be used in an absorption tower. The preliminary design of the unit requires the oil to be pumped from an open tank with a 10 ft liquid level above the floor and forced through 150 ft of 3 inches schedule 40 pipe with a ball check valve and 5 elbows into the top of a tower 30 ft above the floor. The operating pressure in the tower is to be 52 psig and the oil requirement is estimated at 50 gpm. The viscosity of the oil 15 cP and its density is 53.5 Ibm/ft. Assuming the pumping outfit operates with an overall efficiency of 60%, what horsepower input will be required for the pump motor?arrow_forwardWater flows through a reducer in a pipe as shown. The pressure at A is equal to 345 kPa and the pressure at B is equal to 325 kPa. What is the flow rate of the water in the pipeline? Flow 150 mm inside diam. 60 mm inside diam.arrow_forwardI only need correct answrer if you are unsure don't do it skip then I only want correct and nicely donearrow_forward
- Hydraulic Machines Please write clearlyarrow_forwardReducer connection connecting a pipe that carries water with a diameter of A (mm) and another with a diameter of B (mm). If the pressure difference between the two ends of the joint is equal to C (mm) of mercury, calculate the average velocity at the inlet and outlet sections, and find the volumetric flow rate if the loss is small that can be neglected.arrow_forwardDo not copyarrow_forward
- 4. If the pressure difference between points 1 and 2 below is 90 psi, what will be the flow rate? The pipes are galvanized iron with ks = 0.0005 ft. Take kinematic viscosity equal to 1.06 x 10-5 ft²/s and neglect minor losses. 10 in dia 1. 2000 ft, 8 in dia A B 1600 ft, 6 in dia C 800 ft, 10 in dia 2.arrow_forwardA pressure relief valve has a pressure setting of 2000 psi. Compute the horsepower loss across this valve if it returns all the flow back to the tank from a 25-gpm pump. Show your work.arrow_forwardIn Applied fluid mechanic, chapter 8 problem 8.21, can someone explain to me how to solve step by step? The question is A system is being designed to carry 500 gal/min of ethylene glycol at 77 F at a maximum velocity of 10 ft/s. Specify the smallest standard Schedule 40 steel pipe to meet this condition. Then for the selected pipe compute the Reynolds number for flow.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license