Figure 11.25 depicts gasoline flowing from a storage tank into a truck for transport. The gasoline has a specific gravity of
Note: Figure 11.26 shows a system used to pump coolant from a collector tank to an elevated tank, where it is cooled. The pump delivers
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Applied Fluid Mechanics (7th Edition)
- A large container filled with water and uncovered for use in fighting fires in an ethylene production plant. Water from this tank is pumped into the nozzle when needed use. This fire suppression system is designed to be able to transmit 1890 L/min of water at a pressure of 15 bar (relative pressure). If we ignore the difference in height between the water level in the tank and pump, there is no change in diameter of pipe and nozzle, pump efficiency is 70%. Ask how much work (hp) is required to the pump to achieve the desired pressure and flow would like?arrow_forward4. Three storage tanks A, B and C are connected to a piping system as shown in Fig. The flow rate of water in the pipe which is connected to tank B is 0.06 m³/s. Determine the flow rate in the other two pipes and then calculate the level of the water in tank B relative to ground level. Friction factor, f = 0.01. ZA= 25 m A ₁=1000 m d₁= 0.3 m Q₁ = ? l₁= 600 m d,= 0.2 m Q = 0.06 m²/s 1₂= 1300 m d₁= 0.2 m Q₂ = ? B C Zc = 11 m Zaarrow_forwardPatrick is building a cabin on a hillside and has proposed the water system shown below. The distribution tank in the cabin maintains a pressure of 27 psig above the water. There is an energy loss of 14.6 lb*ft/lb in the piping. When the pump is delivering 37 gal/min of water, compute the horsepower delivered by the pump to the water. PA = Submit Question Distribution tank 4 ft Flow hp 214 ft Pump 1 ftarrow_forward
- Nonearrow_forward1. The figure shows a pump that draws 840 L/min of crude oil (s= 0.85) in an underground storage drum to the first stage of a processing system; a) If the total energy loss in the system is 4.2 N m/N of oil flow, determine the power transmitted by the pump to the fluid. b) If the energy loss in the steel suction line is 1.4 N m/N of oil flow, determine the pressure at the pump inletarrow_forward6. A Compressor of a compressed air system displaces air at 25 cubic meters per minute when the intake pressure is 101.4 kPa. Compute the time required to pump up a 9 cubic meter receiver from 550 kPa to 828 kPa if the average volumetric efficiency of the compressor is 70%arrow_forward
- Q1) Oil of specific gravity s.g = 0.8 is drawn into the pump, the pressure at A is -20 kpa and at B is 100 kpa. Calculate the power input of the pump if the discharge at B is 0.07 m'/s and the pipe diameter is 80 mm and h = 2.5 m as shown in Fig.1. Neglect friction losses. Take the efficiency of the pump 0.85 Fig.1arrow_forward2. Water steadily flows from the basement to the second floor through a 0.75-in-diameter copper pipe. The volume flow rate is constant as Q = 12 gal/min (gpm). Water exits through a faucet having a diameter of 0.5 in. Consider all losses, and determine the pressure at (1) required to maintain the constant volume flow rate. If needed, use the tables below and the Moody chart on the last page. Water has a density of 1.94 slug/ft3 and a viscosity of 2.34 x 10-5 psf s, and the gravitational acceleration is g = 32.2 ft/s². The following conversion relations can be used: 1 ft = 12 in, 1 gal = 0.160544 ft³. KL 0.6 0.4 0.2 0 Q-12 gpm Copper Commercial steel or wrought iron 0.2 Pipe Riveted steel Cast iron A₁ 0.4 (1) A₂/A₁ 0.75-in-diameter copper pipe 0.6 15 ft 10 ft A 0.8 (6) 5 ft (3) 1.0 (5) 10 ft 10 ft (7) (8) •∞• 10 ft 8 Threaded 90 elbows Loss coefficients for pipe components KL Elbow, regular 90°, flanged 0.3 Tee, flanged 1.0 Faucet 2.0 0.05 10 0.15 2 1.5 Ball valve, fully open Globe,…arrow_forward4. The discharge pipe of a pump is 400 mm in diameter delivers 0.5 m3/sec of water to a building which maintains a pressure of 100 Kpa at a height of 30 m, what power must be furnished by the pump?arrow_forward
- The pressure loss through the pipe and the minimum power required to overcome the resistance to flow.arrow_forward1. Consider the following schematic of a power plant (operating in what is called a 'Rankine Cycle') Turbine Steam generator Condenser Coling water Economiaer The power plant control room reports that the plant is operating continuously at the following peak load conditions: a. Power to pump = 300KW b. Rate of steam flow = 25 kg/s c. Cooling water temperature at condenser inlet = 13 C d. Cooling water temperature at condenser outlet = 34 C Additionally, the following measurements were made at various points in the piping connecting the power plant components Data Pressure Temp. Quality enthalpy Specific Velocity (kJ/kg) point (kPa) volume (m/s) (m3/kg) (C) (x) 1 6200 2 6100 43 5900 177 ---- 4. 5700 493 ----- 5 5500 482 ----- 6 103 0.94 183 7 96 43 -----arrow_forwardC2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The velocity at the smaller end is 4.9 m/s and at the larger end is 2.5 m/s. The length of the conical tube is 1.3 m and the flow rate of the water is 127 liters/s. The pressure at the smaller end is equivalent to a head of 10.1 m of water. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the diameter at the smaller end in meter, (ii) the diameter at the larger end in meter, and (ii) the pressure at the larger end of the tube in m of water. (2) If a head loss (with head loss)in the tube,h = 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of water and (v) the pressure at the larger end of the tube in m of water. 6) the diameter at the smaller end in meter (ii) the diameter at the larger end in meter (iii) the pressure head at the larger end of the…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY